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Abstract. Let R be a commutative ring with 1, and Let M be a (left) R-module. M

is said to be pointwise projective if for each epimorphism α : A −→ B, where A and B
are any R–modules, and for each homomorphism β : M −→ B, then for every m ∈
M, there exists a homomorphism ϕ : M −→ A, which may depend on m, such that

α ◦ ϕ(m) = β(m). Our mean concern in this paper is to study the relations between

pointwise projectivemodules with cancellation modules and their generalization generator

modules, multiplication modules and its generalizations.

0. Introduction

Let R be a commutative ring with 1, and let M be a (left) R-module. M
is said to be pointwise projective(abbreviated by pwp.) if for each epimorphism
α : A −→ B, where A and B are any R–modules, and for each homomorphism
β : M −→ B, then for every m ∈ M, there exists a homomorphism ϕ : M −→ A,
which may depend on m, such that α ◦ ϕ(m) = β(m). This definition appeared in
[2] under the name locally projective. It is clear that every projective module is a
pwp. module.

In this paper we study the relations between pwp. modules and cancellation
modules and its generalization, generator modules, multiplication modules, quasi-
multiplication modules, and weak multiplication modules.

1. Cancellation, generator, and pointwise projective modules

Let R be a commutative ring with 1, and let M be an R-module, M is called
a cancellation module if for any ideals A and B of R, AM = BM implies A = B
([13]). M is called weak cancellation module if for each two ideals A and B of R,
AM = BM implies A + ann (M) = B + ann (M), therefore M is a cancellation
module if and only if it is faithful weak cancellation ([13]). AnRmoduleM is called
a 1/2 weak cancellation if for any ideal A ofR, AM = M implies A+ann (M) = R,
and M is 1/2 cancellation if it is faithful 1/2 weak cancellation ([11]).
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An R-module M is called a generator if for each R-modules N , B and for
each o 6= f ∈ hom (B,N ), there exists a homomorphism g ∈ hom (M,B) such that
f ◦ g 6= 0 ([7], p.53). It is known that every generator module is a cancellation
module ([6]), but the converse is not true.

There is an example in [11, p.100] of a cancellation module which is not gener-
ator. The following results show that a cancellation module is a generator module
if it is pointwise projective. But first we recall that an R–module M is said to be
pointwise projective (abbreviated by pwp.) if for each epimorphism α : A −→ B,
where A and B are any R–modules, and for each homomorphism β : M −→ B,
then for every m ∈ M, there exists a homomorphism ϕ : M −→ A, which may
depend on m, such that α ◦ ϕ(m) = β(m) ([2]). Not that every projective module
is a pwp.module. The next result will be useful later ([18]).

Theorem 1.1 (The Dual-Basis Lemma for pointwise projective modules).
LetM be an R module. M is pwp.module if and only if for each m1,m2, · · · , mt ∈

M, there are x1, x2, · · · , xn ∈ M and ϕ1, ϕ2, · · · , ϕn ∈ M∗ such that mi =∑n
k=1 ϕk (mi)xk, for all i, 1 ≤ i ≤ t.

We recall that trace T (M) of an R–module M (simply T ) is defined by∑
ϕ (M), where the sum is taken over all ϕ ∈M∗.

Theorem 1.2. Let M be a faithful pwp. R-module, then the following statements
are equivalent:

(1) M is a generator module.

(2) Every simple R-module is a homomorphic image of M.

(3) M is a cancellation module.

(4) M is 1/2 cancellation module.

(5) M is 1/2 weak cancellation module.

(6) M is a weak cancellation module.

(7) M contains a finite submodule W with ann(W) = ann(M).

(8) T is generated by idempotent.

Proof. (1) ⇒ (3) ([6]).
(3) ⇒ (4) Clear.
(4) ⇒ (2) ([11]).
(2) ⇒ (1) Assume T 6= R, therefore there exists a maximal ideal A of

R such that T ⊆ A. Since R/A is simple, then there exists an epimorphism
f : M−→ R/A. Since M is pwp., then ∀m ∈ M, ∃h : M −→ R, which may de-
pend on m, such that π ◦ h(m) = f(m) = 0. Thus f = 0, contradiction. Hence
T = R.
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(4) ⇔ (5) Let A be an ideal of R such that AM = M, M is 1/2 cancellation
if and only if A = R if and only if A+ ann(M) = R, because M is faithful, if and
only if M is 1/2 weak cancellation.

(3) ⇔ (6) Its proof is a modification of the proof (4) ⇔ (5).
(6) ⇒ (8) By [14] TM = M, then T = R, thus T is generated by 1 which is

idempotent.
(7) ⇒ (8) Let W = {a1, a2, · · · , an} be any finite subset of M By ([14]) for each

i, 1 ≤ i ≤ n, there exist xi ∈ ann(ai), yi ∈ (T (M)), such that xi + yi = l. Let
l−y =

∏
i(l−yi). Then y ∈ T (M), and (l−y)ai = 0 ∀i. Now if ann(W) = ann(M),

then l − y ∈ ann(M) and ya = a ∀a ∈ M. If ` ∈ M∗, then `(a) = y`(a) ∈ (y). By
[14] T is generated by idempotent.

(8) ⇒ (7) By assumption T = Rt, t2 = t, then t =
∑n

i=1 ϕi(mi); ϕi ∈ M∗,
mi ∈M. Let W be a submodule of M generated by m1, m2, · · · ,mn. It can easily
be proved that ann(W) = ann(M).

(8) ⇒ (1) By assumption, T = Re; e2 = e. By [14] (l− e)M = (l− e)TM = 0,
hence (l − e) ∈ ann(M) = 0. Thus e = 1, therefore T = R. ¤

Next we seek conditions under which pwp. are 1/2 weak cancellation. But first
we recall the following. Let M be a pwp. R-module, then Mp is a pwp. Rp-module
for each prime ideal P of R, J(M) = J(R)M, and J(M) = M only if M = 0
([14]).

Proposition 1.3. Let M be a non-zero pwp. R-module. If R is a local ring, then
M is a 1/2 weak cancellation module.

Proof. Let A be an ideal, of R with AM = M. Assume A+ ann(M) 6= R. Since
R is local, then there exists a unique maximal ideal B of R with A+ ann(M) ⊆ B,
thus M = BM It is easily seen that MB = O. Then there exists r ∈ R − B such
that rm = 0, i.e. M = 0 and this is a contradiction. ¤

Proposition 1.4. Let M be a pwp. R-module. Assume that Mp is faithful for
each maximal ideal P of R, then M is a cancellation module.

Proof. Let P be a maximal ideal of R, then Mp is pwp. ([14]), by (1.3) Mp is 1/2
weak cancellation, and by (1.2) Mp is a cancellation module. Now let A and B be
any two ideals of R with AM = BM, then ApMp = BpMp for each maximal ideal
P of R. Hence Ap = Bp, and by [1], A = B. ¤

A result similar to the following is known for projective modules ([7], p.132).

Proposition 1.5. Let M be a pwp. R-module, let P be any R-module such that
there is an index set I with M⊕M′ ∼= ⊕i∈IPi; Pi = P for all i ∈ I and M′ is a
direct summand of copies of P , then P is a generator.

Proof. Let N , L be two R-modules, and let 0 6= f ∈ hom(N ,L). Since every
module is an epimorphic image of pwp. (free) module, then there is an epimor-
phism h : M −→ N . Since there is an index set I such that M⊕M′ ∼= ⊕i∈IPi;
Pi = P for all i ∈ I. Thus let π : ⊕Pi −→M be the natural epimorphism. Define
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ϕ : Pi −→M as ϕ = π|pi . Hence h ◦ ϕ : P −→ N such that f ◦ h ◦ ϕ 6= 0 for some
i ∈ I, therefore P is a generator. ¤

Remark. There exist generator (hence cancellation) modules which are not pwp.
modules. For example, let M = Z2 ⊕ Z as Z-module. It is easily seen that
T (M) = Z, hence M is a generator ([7], p.100) (hence cancellation) module. It
is easily seen that Z2 as Z-module is not pwp., then M is not a pwp. Z-module.

Next we look at conditions under which generator modules are pwp. modules.
First observe the following result.

Proposition 1.6. Every generator ideal is a pwp. ideal.

Proof. Let I be a generator ideal of R. By [7, p.100] there exist x1, x2, · · · , xn ∈ I
and ϕ1, ϕ2, · · · , ϕn ∈ I∗ such that 1 =

∑n
j=1 ϕj(xj). Let a ∈ I,

a =
n∑

j=1

ϕj(xj)a =
n∑

j=1

ϕj(a)xj .

Then by the Dual-Basis Lemma for pwp. modules, I is pwp. ¤

Before stating the next result we introduce the following notation. Let End(M)
(simply S) be the endomorphism ring of an R-module M.

Proposition 1.7. Let M be a generator R-module. If S is commutative, then M
is a pwp. R-module.

Proof. By [7, p.100], there exist `1, `2, · · · , `n ∈ M∗ and x1, x2, · · · , xn ∈ M such
that 1 =

∑n
i=1 `i(xi). Let m ∈ M, then m =

∑n
i=1 `i(xi)m, thus m ∈ Tm. Hence

by [14] M is a pwp. module. ¤

Next we show conditions under which pwp. S-modules are generator R-
modules, but before stating the next result we introduce some notation. Let M
be an R-module, define [, ] : M×M∗ −→ S as [m, f ] = fm where fm(a) = f(a)m
for all a ∈M. Let ∆ be the ideal of S generated by Im[, ] ([17]). Recall that M is
said to be T -accessible if TM = M.

Proposition 1.8. Let M be a T -accessible R-module that contains an element,
which is R-torsion free. If M is a pwp. S-module, then M is a generators R-
module.

Proof. Let x ∈ M such that annR(x) = 0. By the Dual-Basis Lemma for pwp.
modules, x =

∑n
i=1 `i(x)yi; `i ∈ M∗ and yi ∈ M. By [17] ∆ = ST , thus

`i(x) ∈ ∆. Therefore there exists ϕij ∈ M∗ such that `i(x) =
∑

j [x, ϕij ], hence
x =

∑
i

∑
j ϕij(yi)x. Then 1−∑

i

∑
j ϕij(yi) ∈ ann(x) = 0, therefore M is a gen-

erator R-module. ¤

Remark. The last proposition is false without the conditionM is T -accessible. For
example, let M = Q as Z-module. It is easily seen that M is not pwp. Z-module,



Pointwise Projective Modules and Some Related Modules 475

but M as End(Q)-module is a pwp. module since End(Q) ∼= Q ([4]). Note that
T (Q) = 0.

2. Multiplication modules and pointwise projective modules

Let N be a submodule of an R-module M. Put [N : M] = {r ∈ R|rM⊆ N},
let [(a) : M] = [a : M ]. And put Θ(M) =

∑
a∈M[a : M]. We recall that M is

called a multiplication module if for each submodule N of M there exists an ideal
I of R such that N = IM. And an ideal I of R is a multiplication ideal if I is a
multiplication R-module ([3]). Smith ([15]) gave the following characterization for
multiplication modules.

Proposition 2.1. An R-module M is multiplication if and only if for all a ∈ M,
ann(a) + Θ(M) = R.

It is known that every projective ideal is a multiplication ideal ([9]), the following
is more general;

Proposition 2.2. Every pwp. ideal is a multiplication ideal.

Proof. Let I be a pwp. ideal of R. By ([14]), for all a ∈ I, ann(a) + T (I) = R. To
show I is a multiplication ideal it is enough by (2.1) to prove that T ⊆ Θ(I). Let
u ∈ T , then u =

∑
j `j(t); `j ∈ I∗, tj ∈ I. Now, to prove that u ∈ Θ(I), we must

show that `j(tj)I ⊆ (tj). Let x ∈ `j(tj)I, then x = `j(tj)z = `j(z)tj ∈ (tj). ¤

The following example shows that the last proposition does not hold in pwp.
modules in general.

Example 2.3. Let M = R⊕R be an R-module, hence M is a pwp. module (Note
thatM is a projective module). AssumeM is multiplication, then S is commutative
([9]). But S isomorphic to 2 × 2 matrices on R which is not commutative, that is
contradiction. Thus M is not a multiplication module.

Next we consider when pwp. R-modules are multiplication modules. Compare
with [9].

Proposition 2.4. Let M be a pwp. R-module with S a commutative ring, then
M is a multiplication module.

Proof. By [14], for all n ∈ M, ann(n) + T = R. By (2.1) it is enough to prove
T ⊆ Θ(M). Let u ∈ T , by [14] u ∈ T 2. Hence u =

∑
i

∑
j

∑
k `ij (mij) αik (xik)

where `ij , αik ∈M∗, mij , xik ∈M. Now, we show that
∑

j

∑
k `ij (mij)αik (xik)M

⊆ (xik). For all y ∈M,

`ij (mij)αik (xik) y = [y, αik] ([xik, `ij ] (mij))
= [xik, `ij ] ([y, αik] (mij))
= αik (mij) `ij(y)xik

∈ (xik).
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¤
The following is an immediate consequence of the proof of the last proposition.

Corollary 2.5. Let M be a pwp. R-module such that T ⊆ Θ(M), then M is a
multiplication module.

It is known that the endomorphism ring of a locally cyclic R-module is com-
mutative ([9]). Thus we have at once, compare with [9].

Proposition 2.6. Every locally cyclic pwp. R-module is a multiplication module.

We summarize the last results in the following theorem, compare with [9].

Theorem 2.7. Let M be a pwp. R-module, then the following statements are
equivalent:

(1) M is a multiplication module.

(2) S is a commutative ring.

(3) M is locally cyclic.

(4) T ⊆ Θ(M).

Remark. The last theorem fails if the condition that M is a pwp. R-module is
removed. For example, let Q be the module of rational numbers over the integers
Z. It is known that End(Q) ∼= Q ([4]), hence commutative. But it is easy to see
that Q is not a multiplication module. Observe that Q is not a pwp. module ([14]).

It is known that if M is a finitely generated multiplications R-module, then M
is projective if and only if ann(M) = R(1 − e); e2 = e ([10]). This statement is
false if M is not finitely generated. However, we have the following.

Proposition 2.8. Let M be a multiplication R-module with ann(M) = R(l − e);
e2 = e. Then M is a pwp. R-module.

Proof. Let a ∈M, then Ra is a cyclic submodule of M. By [10] a =
∑n

i=1 fi(a)bi;
bi ∈M, fi ∈M∗. By (1.1) M is a pwp. module. ¤

Remark. The last proposition is false without the condition ann(M) = R(1− e);
e2 = e. For example, Z2 as Z-module is multiplication but it is not pwp. Note that
ann(Z2) is not generated by an idempotent element.

The following theorem is a generalization of proposition (2.2).

Proposition 2.9. Every pwp. submodule of a flat multiplication module is a mul-
tiplication module.

Proof. Let M be a pwp. submodule of the flat multiplication module N . Since N
is a flat module, then for each maximal ideal P of R, NP is a flat Rp-module, and
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by [3] Np is cyclic. Thus ann(Np) is a pure ideal in Rp. Hence ann(Np) = 0 or
ann(Np) ∼= Rp, thus either NP = (0) or Np

∼= Rp. On the other hand, by [14], Mp

is a pwp. Rp-module and it is contained in Np, note that Mp = (0) if Np = (0).
Hence Mp is isomorphic to a pwp. ideal of Rp. By (2.2) Mp is a multiplication
module, then Mp is cyclic. Hence M is locally cyclic. Therefore by (2.7) M is
multiplication. ¤

Since every multiplication module with pure annihilator is flat ([8]), we have.

Corollary 2.10. Every pwp. submodule of a multiplication module with pure an-
nihilator is multiplication.

3. Quasi-multiplication modules and pointwise projective modules

Let N be a submodule of an R-module M, put [N : M]S = {f ∈ End(M)|
f(M) ⊆ N}, ΘS(M) =

∑
a∈M[a : M]S , and annS(a) = {f ∈ End(M)|f(a) = 0};

a ∈ M. An R-module M is called quasi-multiplication if for all a ∈ M,
annS(a) + ΘS(M) = S ([5]).

It is known that every projective module is quasi-multiplication module ([5]).
A similar result holds for pwp. modules.

Proposition 3.1. Every pwp. module is a quasi-multiplication module.

Proof. Let M be an R-module, and let m ∈ M. By (1.1), m =
∑n

k=1 ϕk(m)xk;
xk ∈ M, ϕk ∈ M∗. Then m =

∑n
k=1[xk, ϕk](m). If γ =

∑n
k=1[xk, ϕk], then

γ ∈ ∆, thus m = γ(m). Therefore 1 − γ ∈ annS(m). But γ ∈ ΘS(M), then
annS(m) + ΘS(M) = S. ¤

The following example shows that there are quasi-multiplication modules, which
are not pwp. modules

Example 3.2. Let R = Z8. Consider the R-module M =
(
0, 4

) ⊕ Z8. It is
Clear that

(
0, 4

)
and Z8 are quasi- multiplication modules. By [5] M is a quasi-

multiplication module. Since the only non-zero homomorphism f : (0, 4) −→ Z8 is
f(x) = x, then by (1.1) (0, 4) is not pwp. Therefore M is not pwp. ([14]).

Next we consider when quasi-multiplication modules are pwp. modules. It is
known that if M is a finitely generated quasi multiplication R-module such that for
all a ∈ M, ann(a) is generated by an idempotent element, then M is a projective
module ([5]). We generalize this result in theorem (3.4). But first we recall the
following.

Proposition 3.3 ([18]). Let M be an R-module, then M is a pwp. module if
and only if for all column-finite matrices {aij |i ∈ I; j ∈ J}; aij ∈ R (i.e. each
column has only a finite number of non-zero elements), and all families {mi|i ∈ I};
mi ∈M, with

∑
i aijmi = 0 for all j ∈ J , and for each finite subset Io of I, there

are finite families {xk|k ∈ K}; xk ∈M, {rki|k ∈ K, i ∈ I}; rki ∈ R such that:

a.
∑

i∈I0
rkiaij = 0.
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b. mi =
∑

k rkixk, ∀i ∈ I0.

Theorem 3.4. Let M be a quasi-multiplication R-module such that for all a ∈M,
ann(a) = R(l − e); e2 = e and e depends on a, M is a pwp. module.

Proof. Let {akj |k ∈ K, j ∈ J}; akj ∈ R, and let {mk|k ∈ K}; mk ∈M, such that:

(1)
∑

k∈K

akjmk = 0, ∀j ∈ J

Since annS(mk) + ΘS(M) = S, then there exist ϕ ∈ annS(mk), g =
∑

i∈I γi

∈ ΘS(M), with:

(2) ϕ + g = I

Since γi(M) ⊆ (mi), then γi(mk) = rikmi. Let K = {l, 2, · · · , n} be an
arbitrary subset of K, and let {rikei| k ∈ K, i ∈ I}; rikei ∈ R, where ei is an
idempotent element such that ann(mi) = R(l − ei). Thus mi = eimi. By (2),∑

i∈I γi(mk) = mk. Therefore
∑

i∈I rikmi = mk, hence mk =
∑

i∈I rikeimi. By
(1), 0 = γi

(∑
k∈K′ akjmk

)
= mi (

∑
k akjrik). Then

∑

k

akjrikei =

(∑

k

akjrik

)
ei = 0.

By (3.3), M is a pwp. module. ¤

It was proved in [5] that if M is a finitely generated quasi multiplication R-
module with R/ann(M) = S, then M is multiplication. Besides if ann(M) =
R(l− e); e2 = e, then M is a projective module ([15]). We generalize this result as
follows.

Proposition 3.5. Let M be a quasi-multiplication R-module with R/ann(M) = S
and ann(M) = R(l − e); e2 = e, then M is a pwp. module.

Proof. Let 0 6= m ∈ M. Since annS(m) + ΘS(M) = S, there exist ϕ ∈ annS(m)
and g =

∑
γj ∈ ΘS(M) such that ϕ + g = I. Since S = R/ann(M), then there

exists rj ∈ R such that γj(x) = rjx for all x ∈M. Because γj(M) ⊆ (aj); aj ∈M,
thus rjM ⊆ (aj). Hence for all x ∈ M, rj ∈ Θ(M). Now m = g(m) =

∑
j rjm,

hence 1 −∑
rj ∈ ann(m). Therefore by (2.1) M is multiplication. By (2.8) M is

pwp. ¤

4. Weak multiplication modules and pointwise projective modules

An R-module M is said to be a weak multiplication module if for each sub-
module N of M, N =

∑
ϕ(M), where the sum is taken over all ϕ ∈ hom(M,N )

([12]).
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It is proved in [12] that a T -accessible R-module M is weak multiplication if
and only if for all m ∈ M, m ∈ Tm. Since for every pwp. R-module M, for all
m ∈M, m ∈ Tm ([14]), so we have at once.

Proposition 4.1. Every pwp. R-module is weak multiplication.

Remark. The converse of the last proposition is false. In fact, the Z-module Z2 is
weak multiplication ([12]), but it is not pwp. ([14]).

Therefore we will look at conditions under which weak multiplication modules
are pwp. modules.

Proposition 4.2. Let M be weak multiplication T -accessible R-module. If S is
commutative, then M is a pwp. module.

Proof. By assumption, for all m ∈M, m ∈ Tm. By [14] M is pwp. ¤

Remark. Let M be an R-module. It is proved in [12] that if T = R, then M
is weak multiplication, therefore there exist weak multiplication modules which are
not pwp. modules. For examples, let M = Z2 ⊕ Z as Z-module, hence T (M) = Z,
that means M is weak multiplication. But M is not pwp., because Z2 as Z-module
is not pwp. ([14]). Note that EndZ (Z2) ∼= Z2, EndZ(Z) ∼= Z and homZ (Z,Z2) 6= 0
hence by [16] EndZ(M) is not commutative.

It is observed in [14] that a pwp. R-module is not necessary a pwp. S-module.
The next proposition shows when this statement holds. First we need the following
proposition ([6]).

Proposition 4.3.

(1) Let M be a weak multiplication R-module such that S is a commutative ring,
then M is a weak multiplication S-module.

(2) Let M be a T -accessible R-module. If M is a weak multiplications S-module
and S is a commutative ring, then M is a weak multiplication R-module.

Proposition 4.4. Let M be an R-module such that S is commutative. Then M
is a pwp. R-module if and only if M is a pwp. S-module.

Proof. (⇒) By (4.1), M is a weak multiplication R-module, then by (4.3) M is a
weak multiplication S-module. By [17] ∆M = M, and STM = M , thus by (4.2)
M is a pwp. S-module.

(⇐) By [17], ∆M = M, hence TM = M and M is a weak multiplication
S-module. By (4.3) M is a weak multiplication R-module. Therefore by (4.2) M
is a pwp. R-module. ¤
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