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ABSTRACT. Let R be a commutative ring with 1, and Let M be a (left) R-module. M
is said to be pointwise projective if for each epimorphism «: A — B, where A and B
are any R-modules, and for each homomorphism 3 : M —— B, then for every m €
M, there exists a homomorphism ¢ : M — A, which may depend on m, such that
a o @(m) = B(m). Our mean concern in this paper is to study the relations between
pointwise projectivemodules with cancellation modules and their generalization generator
modules, multiplication modules and its generalizations.

0. Introduction

Let R be a commutative ring with 1, and let M be a (left) R-module. M
is said to be pointwise projective(abbreviated by pwp.) if for each epimorphism
a: A — B, where A and B are any R—modules, and for each homomorphism
G : M — B, then for every m € M, there exists a homomorphism ¢ : M — A,
which may depend on m, such that « o ¢(m) = 3(m). This definition appeared in
[2] under the name locally projective. It is clear that every projective module is a
pwp. module.

In this paper we study the relations between pwp. modules and cancellation
modules and its generalization, generator modules, multiplication modules, quasi-
multiplication modules, and weak multiplication modules.

1. Cancellation, generator, and pointwise projective modules

Let R be a commutative ring with 1, and let M be an R-module, M is called
a cancellation module if for any ideals A and B of R, AM = BM implies A = B
([13]). M is called weak cancellation module if for each two ideals A and B of R,
AM = BM implies A 4+ ann (M) = B + ann (M), therefore M is a cancellation
module if and only if it is faithful weak cancellation ([13]). An R module M is called
a 1/2 weak cancellation if for any ideal A of R, AM = M implies A+ann (M) =R,
and M is 1/2 cancellation if it is faithful 1/2 weak cancellation ([11]).
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An R-module M is called a generator if for each R-modules N, B and for
each 0 # f € hom (B, ), there exists a homomorphism g € hom (M, B) such that
fog # 0 ([7], p-53). It is known that every generator module is a cancellation
module ([6]), but the converse is not true.

There is an example in [11, p.100] of a cancellation module which is not gener-
ator. The following results show that a cancellation module is a generator module
if it is pointwise projective. But first we recall that an R-module M is said to be
pointwise projective (abbreviated by pwp.) if for each epimorphism o : A — B,
where A and B are any R—modules, and for each homomorphism g : M — B,
then for every m € M, there exists a homomorphism ¢ : M — A, which may
depend on m, such that a o ¢(m) = S(m) ([2]). Not that every projective module
is a pwp.module. The next result will be useful later ([18]).

Theorem 1.1 (The Dual-Basis Lemma for pointwise projective modules).
Let M be an R module. M is pwp.module if and only if for each my,ma, -+ ,my €
M, there are x1,z9, - - ,x, € M and p1,p2," - ,0n € M* such that m; =
$1, P 2
Y opey ok (my) zp, for alli, 1 <i<t.

We recall that trace T (M) of an R-module M (simply T') is defined by
> (M), where the sum is taken over all p € M*.

Theorem 1.2. Let M be a faithful pwp. R-module, then the following statements
are equivalent:

(1) M is a generator module.

2) FEvery simple R-module is a homomorphic image of M.

3) M is a cancellation module.

4) M is 1/2 cancellation module.

6) M is a weak cancellation module.

(2)

(3)

(4)

(5) M is 1/2 weak cancellation module.

(6)

(7) M contains a finite submodule W with ann(W) = ann(M).
(8)

8) T is generated by idempotent.

Proof. (1) = (3) ([6]).

(3) = (4) Clear.

(4) = (2) ([11).

(2) = (1) Assume T # R, therefore there exists a maximal ideal A of
R such that T C A. Since R/A is simple, then there exists an epimorphism
f: M — R/A. Since M is pwp., then Vm € M, 3Jh : M — R, which may de-
pend on m, such that m o h(m) = f(m) = 0. Thus f = 0, contradiction. Hence
T=R.
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(4) & (5) Let A be an ideal of R such that AM = M, M is 1/2 cancellation
if and only if A = R if and only if A+ ann(M) = R, because M is faithful, if and
only if M is 1/2 weak cancellation.

(3) < (6) Its proof is a modification of the proof (4) < (5).

(6) = (8) By [14] TM = M, then T = R, thus T is generated by 1 which is
idempotent.

(7) = (8) Let W = {ay,as,- - ,a,} be any finite subset of M By ([14]) for each
i, 1 < i < n, there exist x; € ann(a;), y; € (T(M)), such that z; +y; = I. Let
-y =11,(l—y). Theny € T(M), and (I—y)a; = 0 Vi. Now if ann(W) = ann(M),
then [ —y € ann(M) and ya = a Va € M. If £ € M*, then ¢(a) = yl(a) € (y). By
[14] T is generated by idempotent.

(8) = (7) By assumption T' = Rt, t* = ¢, then t = Y. | 0;(m;); p; € M*,
m; € M. Let W be a submodule of M generated by my,ms, -+, m,. It can easily
be proved that ann(W) = ann(M).

(8) = (1) By assumption, T = Re; > =e. By [14] (I —e)M = (I —e)TM = 0,
hence (I — e) € ann(M) = 0. Thus e = 1, therefore T' = R. O

Next we seek conditions under which pwp. are 1/2 weak cancellation. But first
we recall the following. Let M be a pwp. R-module, then M, is a pwp. R,-module
for each prime ideal P of R, J(M) = J(R)M, and J(M) = M only if M =0
([14]).

Proposition 1.3. Let M be a non-zero pwp. R-module. If R is a local ring, then
M is a 1/2 weak cancellation module.

Proof. Let A be an ideal, of R with AM = M. Assume A + ann(M) # R. Since
R is local, then there exists a unique maximal ideal B of R with A + ann(M) C B,
thus M = BM It is easily seen that Mg = O. Then there exists r € R — 3 such
that rm = 0, i.e. M = 0 and this is a contradiction. O

Proposition 1.4. Let M be a pwp. R-module. Assume that M, is faithful for
each mazimal ideal P of R, then M is a cancellation module.

Proof. Let P be a maximal ideal of R, then M), is pwp. ([14]), by (1.3) M, is 1/2
weak cancellation, and by (1.2) M, is a cancellation module. Now let A and B be
any two ideals of R with AM = BM, then Ay M,, = B, M,, for each maximal ideal
P of R. Hence A, = B,, and by [1], A = B. O

A result similar to the following is known for projective modules ([7], p.132).

Proposition 1.5. Let M be a pwp. R-module, let P be any R-module such that
there is an index set I with M & M’ = ®;c;P;; P, =P for alli € I and M’ is a
direct summand of copies of P, then P is a generator.

Proof. Let N, L be two R-modules, and let 0 # f € hom(N,L). Since every
module is an epimorphic image of pwp. (free) module, then there is an epimor-
phism h : M — N. Since there is an index set I such that M @& M’ = ®;c1P;;
P, = P for all i € I. Thus let 7 : ®P; — M be the natural epimorphism. Define
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o : P — M as ¢ =lp,. Hence hoyp: P — N such that fohop # 0 for some
i € I, therefore P is a generator. O

Remark. There exist generator (hence cancellation) modules which are not pwp.
modules. For example, let M = Zs & Z as Z-module. It is easily seen that
T(M) =Z, hence M is a generator ([7], p.100) (hence cancellation) module. It
is easily seen that Zs as Z-module is not pwp., then M is not a pwp. Z-module.

Next we look at conditions under which generator modules are pwp. modules.
First observe the following result.

Proposition 1.6. Every generator ideal is a pwp. ideal.

Proof. Let I be a generator ideal of R. By [7, p.100] there exist z1, 29, - ,2, € I
and @1, 2, -,y € I* such that 1 =377 @;(z;). Let a € I,

a= Zcpj(scj)a = ngj(a)mj.

Then by the Dual-Basis Lemma for pwp. modules, I is pwp. (|

Before stating the next result we introduce the following notation. Let End(M)
(simply S) be the endomorphism ring of an R-module M.

Proposition 1.7. Let M be a generator R-module. If S is commutative, then M
is a pwp. R-module.

Proof. By [7, p.100], there exist ¢1,¢5, -+ , ¢, € M* and x1,x9,--- ,x, € M such
that 1 =Y | 4;(2;). Let m € M, then m = >, £;(z;)m, thus m € T'm. Hence
by [14] M is a pwp. module. O

Next we show conditions under which pwp. S-modules are generator R-
modules, but before stating the next result we introduce some notation. Let M
be an R-module, define [,] : M x M* — § as [m, f] = f,, where f,(a) = f(a)m
for all @ € M. Let A be the ideal of S generated by Im[,] ([17]). Recall that M is
said to be T-accessible if TM = M.

Proposition 1.8. Let M be a T-accessible R-module that contains an element,
which is R-torsion free. If M is a pwp. S-module, then M is a generators R-
module.

Proof. Let © € M such that anng(z) = 0. By the Dual-Basis Lemma for pwp.
modules, x = > li(z)y;; ¢ € M* and y; € M. By [17] A = T, thus
li(z) € A. Therefore there exists ¢;; € M* such that ¢;(z) = 3_;[z, ¢i;], hence
z =732 ¢ij(yi)r. Then 1 =373 ¢;;(y;) € ann(z) = 0, therefore M is a gen-
erator R-module. (]

Remark. The last proposition is false without the condition M is T-accessible. For
example, let M = Q as Z-module. It is easily seen that M is not pwp. Z-module,
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but M as End(Q)-module is a pwp. module since End(Q) = Q ([4]). Note that
T(Q) = 0.

2. Multiplication modules and pointwise projective modules

Let N be a submodule of an R-module M. Put [N : M] = {r € RlrM C N},
let [(a) : M] = [a : M]. And put O(M) = > \la : M]. We recall that M is
called a multiplication module if for each submodule N of M there exists an ideal
I of R such that A/ = IM. And an ideal I of R is a multiplication ideal if I is a
multiplication R-module ([3]). Smith ([15]) gave the following characterization for
multiplication modules.

Proposition 2.1. An R-module M is multiplication if and only if for all a € M,
ann(a) + O(M) = R.

It is known that every projective ideal is a multiplication ideal ([9]), the following
is more general;

Proposition 2.2. Every pwp. ideal is a multiplication ideal.

Proof. Let I be a pwp. ideal of R. By ([14]), for all a € I, ann(a) + T(I) = R. To
show I is a multiplication ideal it is enough by (2.1) to prove that ' C © (I). Let
u €T, then u= 3. ¢;(t); {; € I", t; € I. Now, to prove that u € © (I), we must
show that gj(tj).[ - (tj) Let x € gj(tj)_[, then x = Ej(tj)z = fj(z)tj S (tj) O

The following example shows that the last proposition does not hold in pwp.
modules in general.

Example 2.3. Let M = R®R be an R-module, hence M is a pwp. module (Note
that M is a projective module). Assume M is multiplication, then S is commutative
([9])). But S isomorphic to 2 x 2 matrices on R which is not commutative, that is
contradiction. Thus M is not a multiplication module.

Next we consider when pwp. R-modules are multiplication modules. Compare
with [9].
Proposition 2.4. Let M be a pwp. R-module with S a commutative ring, then
M is a multiplication module.

Proof. By [14], for all n € M, ann(n) +T = R. By (2.1) it is enough to prove
TCOWM). Let u e T, by [14] uw € T? Hence u = Y, > . >1 lij (mij) cuir (zin)
where fﬁ, QG € M*, Mij, Tik e M. NOW, we show that Z]‘ ik Eij (mlj) (6732 (Izk) M
C (x4). For ally € M,

Lij (mig) aie (Tar)y = [y, cir) ([@in, Lij] (M)
= [zik, b ([y, cin] (mij))
= ik (M) bij(y)Tik
€ (z)
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O

The following is an immediate consequence of the proof of the last proposition.

Corollary 2.5. Let M be a pwp. R-module such that T C ©(M), then M is a
multiplication module.

It is known that the endomorphism ring of a locally cyclic R-module is com-
mutative ([9]). Thus we have at once, compare with [9].

Proposition 2.6. FEvery locally cyclic pwp. R-module is a multiplication module.
We summarize the last results in the following theorem, compare with [9].

Theorem 2.7. Let M be a pwp. R-module, then the following statements are
equivalent:

(1) M is a multiplication module.
(2) S is a commutative ring.

(3) M is locally cyclic.

(4) T CoM).

Remark. The last theorem fails if the condition that M is a pwp. R-module is
removed. For example, let Q be the module of rational numbers over the integers
Z. It is known that End(Q) = Q ([4]), hence commutative. But it is easy to see
that Q is not a multiplication module. Observe that Q is not a pwp. module ([14]).

It is known that if M is a finitely generated multiplications R-module, then M
is projective if and only if ann(M) = R(1 — e); e* = e ([10]). This statement is
false if M is not finitely generated. However, we have the following.

Proposition 2.8. Let M be a multiplication R-module with ann(M) = R(l —e);

e? =e. Then M is a pwp. R-module.

Proof. Let a € M, then Ra is a cyclic submodule of M. By [10] a = Y"1 | fi(a)b;;
b € M, f; € M*. By (1.1) M is a pwp. module. O
Remark. The last proposition is false without the condition ann(M) = R(1 — e);
€2 = e. For example, Zs as Z-module is multiplication but it is not pwp. Note that
ann(Zs) is not generated by an idempotent element.

The following theorem is a generalization of proposition (2.2).

Proposition 2.9. Every pwp. submodule of a flat multiplication module is a mul-
tiplication module.

Proof. Let M be a pwp. submodule of the flat multiplication module A/. Since N/
is a flat module, then for each maximal ideal P of R, Np is a flat R,-module, and
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by [3] N, is cyclic. Thus ann(N,) is a pure ideal in R,. Hence ann(N,) = 0 or
ann(N,) = R, thus either Np = (0) or NV}, = R,,. On the other hand, by [14], M,
is a pwp. Rp-module and it is contained in N, note that M, = (0) if NV, = (0).
Hence M, is isomorphic to a pwp. ideal of R,. By (2.2) M, is a multiplication
module, then M, is cyclic. Hence M is locally cyclic. Therefore by (2.7) M is
multiplication. O

Since every multiplication module with pure annihilator is flat ([8]), we have.

Corollary 2.10. FEvery pwp. submodule of a multiplication module with pure an-
nihilator is multiplication.

3. Quasi-multiplication modules and pointwise projective modules

Let A/ be a submodule of an R-module M, put [N : M]g = {f € End(M)]
fM) SN}, O5(M) =3 caqla s Mg, and anng(a) = {f € End(M)|f(a) = 0};
a € M. An R-module M is called quasi-multiplication if for all a € M,
anng(a) + Og(M) =5 ([5]).

It is known that every projective module is quasi-multiplication module ([5]).
A similar result holds for pwp. modules.

Proposition 3.1. Every pwp. module is a quasi-multiplication module.

Proof. Let M be an R-module, and let m € M. By (1.1), m = Y ;_; or(m)xy;
rp € M, ¢, € M*. Then m = Y7_ [k, okl(m). If v = > 0_ @k, ¢x], then
v € A, thus m = ~(m). Therefore 1 — v € anng(m). But v € O5(M), then
anng(m) + Og(M) = S. O

The following example shows that there are quasi-multiplication modules, which
are not pwp. modules

Example 3.2. Let R = Zg. Consider the R-module M = ( 74) @ Zs. It is
Clear that (0,4) and Zs are quasi- multiplication modules. By [5] M is a quasi-
multiplication module. Since the only non-zero homomorphism f : (0,4)
f(Z) ==, then by (1.1) (0,4) is not pwp. Therefore M is not pwp. ([14])

Next we consider when quasi-multiplication modules are pwp. modules. It is
known that if M is a finitely generated quasi multiplication R-module such that for
all @ € M, ann(a) is generated by an idempotent element, then M is a projective
module ([5]). We generalize this result in theorem (3.4). But first we recall the
following.

—>Z8 is

Proposition 3.3 ([18]). Let M be an R-module, then M is a pwp. module if
and only if for all column-finite matrices {a;jli € I; j € J}; a;; € R (i.e. each
column has only a finite number of non-zero elements), and all families {m;|i € I};
m; € M, with Y, a;ym; =0 for all j € J, and for each finite subset I, of I, there
are finite families {xi|k € K}; xp € M, {rpi|k € K,i € I}; rp; € R such that:

a. Zie[o rkiaij = 0
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b. m; = Zk reiZe, Vi€ .

Theorem 3.4. Let M be a quasi-multiplication R-module such that for all a € M,
ann(a) = R(l — e); €2 = e and e depends on a, M is a pwp. module.

Proof. Let {ax;|k € K, j € J}; ax; € R, and let {my|k € K}; my € M, such that:

(1) Z agymp =0, VjieJ

keK

Since anng(my) + ©5(M) = S, then there exist ¢ € anng(my), 9= ,c; Vi
€ Og(M), with:

(2) prg=1

Since v;(M) C (m;), then v;(mg) = rigm;. Let K = {,2,---,n} be an
arbitrary subset of K, and let {rje;| k € K, i € I}; rire; € R, where e; is an
idempotent element such that ann(m;) = R(I — e;). Thus m; = e;m;. By (2),
> icrVi(my) = my. Therefore ), ; riwm; = my, hence my, = >, rikesm;. By
(1), 0= (Xyex aryme) = m; (3, arjrir). Then

E AjTik€i = ( E akj"”ik-) e; =0.
k k

By (3.3), M is a pwp. module. a

It was proved in [5] that if M is a finitely generated quasi multiplication R-
module with R/ann(M) = S, then M is multiplication. Besides if ann(M) =
R(I —e); €* = e, then M is a projective module ([15]). We generalize this result as
follows.

Proposition 3.5. Let M be a quasi-multiplication R-module with R /ann(M) = S
and ann(M) = R(l —e); €2 = e, then M is a pwp. module.

Proof. Let 0 # m € M. Since anng(m) + Og(M) = S, there exist ¢ € anng(m)
and g = ). 7; € Og(M) such that ¢ + g = I. Since S = R/ann(M), then there
exists r; € R such that v;(x) = rjz for all z € M. Because v;(M) C (a;); a; € M,
thus ;M C (a;). Hence for all z € M, r; € O(M). Now m = g(m) = > ;r;jm,
hence 1 — )" r; € ann(m). Therefore by (2.1) M is multiplication. By (2.8) M is

pwp. O

4. Weak multiplication modules and pointwise projective modules

An R-module M is said to be a weak multiplication module if for each sub-
module N of M, N =" p(M), where the sum is taken over all ¢ € hom(M,N)

([12]).
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It is proved in [12] that a T-accessible R-module M is weak multiplication if
and only if for all m € M, m € T'm. Since for every pwp. R-module M, for all
m € M, m € Tm ([14]), so we have at once.

Proposition 4.1. Every pwp. R-module is weak multiplication.

Remark. The converse of the last proposition is false. In fact, the Z-module Z; is
weak multiplication ([12]), but it is not pwp. ([14]).

Therefore we will look at conditions under which weak multiplication modules
are pwp. modules.

Proposition 4.2. Let M be weak multiplication T-accessible R-module. If S is
commutative, then M is a pwp. module.

Proof. By assumption, for all m € M, m € Tm. By [14] M is pwp. O

Remark. Let M be an R-module. It is proved in [12] that if T = R, then M
is weak multiplication, therefore there exist weak multiplication modules which are
not pwp. modules. For examples, let M = Zy ® Z as Z-module, hence T'(M) = Z,
that means M is weak multiplication. But M is not pwp., because Zs as Z-module
is not pwp. ([14]). Note that Endy (Z2) = Zs, Endz(Z) = Z and homg (Z,Z3) # 0
hence by [16] Endz (M) is not commutative.

It is observed in [14] that a pwp. R-module is not necessary a pwp. S-module.
The next proposition shows when this statement holds. First we need the following
proposition ([6]).

Proposition 4.3.

(1) Let M be a weak multiplication R-module such that S is a commutative ring,
then M is a weak multiplication S-module.

(2) Let M be a T-accessible R-module. If M is a weak multiplications S-module
and S is a commutative Ting, then M is a weak multiplication R-module.

Proposition 4.4. Let M be an R-module such that S is commutative. Then M
is a pwp. R-module if and only if M is a pwp. S-module.
Proof. (=) By (4.1), M is a weak multiplication R-module, then by (4.3) M is a
weak multiplication S-module. By [17) AM = M, and ¢TM = M, thus by (4.2)
M is a pwp. S-module.

(<) By [17], AM = M, hence TM = M and M is a weak multiplication
S-module. By (4.3) M is a weak multiplication R-module. Therefore by (4.2) M
is a pwp. R-module. O
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