Structure of the Double Four-spiral Semigroup

V. M. Chandrasekaran
Department of Mathematics, Vellore Institute of Technology, Deemed University, Vellore - 632014, India
e-mail : vmcsn@yahoo.com
M. Loganathan
Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai - 600 005, India

Abstract. In this paper, we first give an alternative description of the fundamental orthodox semigroup $\bar{A}(1,2)$. We then use this to represent the double four-spiral semigroup $D S p_{4}$ as a regular Rees matrix semigroup over $\bar{A}(1,2)$.

1. Introduction

In [2], [3] Byleen, Meakin and Pastijn introduced the four-spiral semigroup $S p_{4}$ and the double four-spiral semigroup $D S p_{4}$ and studied their properties in detail. These regular semigroups play an important role in the theory of idempotent generated bismple but not completely simple semigroups. The semigroup $\bar{A}(1,2)$ was introduced in [3] as a tool to analyse the structure of $D S p_{4}$. In this paper we give an alternative description of $\bar{A}(1,2)$ and we show that the bicyclic semigroup $C(p, q)$ is an inverse transversal of $\bar{A}(1,2)$. We then represent $D S p_{4}$ as a regular Rees matrix semigroup over $\bar{A}(1,2)$ which is analogous to the Byleen's representation of $S p_{4}$ as a regular Rees matrix semigroup over the bicyclic semigroup $C(p, q)$ ([1]).

First we will introduce the terminologies which are used in this paper. We use whenever possible the notation of Clifford and Preston ([4]).

Given a nonempty set A we denote by F_{A} the free semigroup on A. The elements of F_{A} are the nonempty finite words $a_{1} a_{2} \cdots a_{m}, \quad a_{i} \in A, 1 \leq i \leq m$. The multiplication on F_{A} is given by

$$
\left(a_{1} a_{2} \cdots a_{m}\right)\left(b_{1} b_{2} \cdots b_{n}\right)=a_{1} a_{2} \cdots a_{m} b_{1} b_{2} \cdots b_{n}
$$

If 1 denotes the empty word, then $F_{A}^{1}=F_{A} \cup\{1\}$ is called the free monoid on A. For any word $a=a_{1} a_{2} \cdots a_{m}$ in F_{A}, the integer m is called the length of a and the length of 1 is by definition 0 .

Received February 20, 2002, and, in revised form, July 15, 2003.
2000 Mathematics Subject Classification: 20M17.
Key words and phrases: four - spiral semigroup, double four-spiral semigroup, regular Rees matrix semigroup.

Let $F=F_{\{x, y\}}^{1}=F_{\{x, y\}} \cup\{1\}$ be the free monoid on $\{x, y\}$. For each $m \geq 0$, let F^{m} be the subset F consisting of words of length m. Thus, for example, $F^{0}=\{1\}$, $F^{1}=\{x, y\}$ and $F^{2}=\left\{x^{2}, x y, y x, y^{2}\right\}$. Define $\alpha: F \rightarrow F$ by $(1) \alpha=1,(x) \alpha=1$, (y) $\alpha=1$ and $(a) \alpha=a_{2} a_{3} \cdots a_{m}$ for any word $a=a_{1} a_{2} \cdots a_{m}$ of length $m \geq 2$. For each $r>0$ let α^{r} denote the composite of αr-times and let $\alpha^{0}=i d$ on F. Thus for any $a=a_{1} a_{2} \cdots a_{m} \in F$,

$$
\text { (a) } \alpha^{r}= \begin{cases}1 & \text { if } r \geq m \\ a_{r+1} a_{r+2} \cdots a_{m} & \text { if } r<m\end{cases}
$$

Lemma 1. If $a=a_{1} a_{2} \cdots a_{m}$ is a word of length m and $b=b_{1} b_{2} \cdots b_{n}$ is a word of length n, then

$$
\begin{equation*}
(a b) \alpha^{r}=(a) \alpha^{r}(b) \alpha^{r-\min (r, m)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(a(b) \alpha^{s}\right) \alpha^{r}=(a) \alpha^{r}(b) \alpha^{r+s-\min (r, m)} \tag{2}
\end{equation*}
$$

where $m, n, r, s \geq 0$.
Proof. To prove (1), we consider the following four cases.
Case 1 : $r<m$. We see that

$$
\begin{aligned}
(a b) \alpha^{r} & =a_{r+1} \cdots a_{m} b=(a) \alpha^{r} b \\
& =(a) \alpha^{r}(b) \alpha^{r-\min (r, m)}=(a) \alpha^{r}(b) \alpha^{0} .
\end{aligned}
$$

Case $2: r=m$. Then

$$
(a b) \alpha^{r}=b=(a) \alpha^{r}(b)=(a) \alpha^{r}(b) \alpha^{0}=(a) \alpha^{r}(b) \alpha^{r-\min (r, m)} .
$$

Case 3:m<r<m+1. Since

$$
(a) \alpha^{r}=1,(a) \alpha^{r}(b) \alpha^{r-\min (r, m)}=(b) \alpha^{r-m}=b_{r-m+1} \cdots b_{n}=(a b) \alpha^{r} .
$$

Case $4: m+n \leq r$. In this case the sides (1) are equal to 1 .
(2) follows by taking $b=(b) \alpha^{s}$ in (1).

Definition 2 ([4]). The bicyclic semigroup is the semigroup with identity element generated by p, q subject to the relation $p q=1$. Thus $C(p, q)$ is of the form $q^{m} p^{n}, m, n \geq 0$ and for any $q^{m} p^{n}, q^{r} p^{s} \in C(p, q), \quad q^{m} p^{n} q^{r} p^{s}=q^{m+r-t} p^{n+s-t}$, where $t=\min (n, r)$. The semilattice of idempotents of $C(p, q)$ is $\left\{q^{m} p^{m}: m \geq 0\right\}$ and $\left(q^{m} p^{n}\right)^{-1}=q^{n} p^{m}$.

The Green's relations on $C(p, q)$ are given by $q^{m} p^{n} R q^{r} p^{s} \Leftrightarrow m=r, \quad q^{m} p^{n} L q^{r} p^{s} \Leftrightarrow n=s, \quad q^{m} p^{n} H q^{r} p^{s} \Leftrightarrow m=r, n=s$ and $\quad q^{m} p^{n} D q^{r} p^{s} \quad$ for all $q^{m} p^{n}, q^{r} p^{s} \in C(p, q)$.

2. Description of $\bar{A}(1,2)$

Let $A(1,2)=\left\{\left(a, q^{m} p^{n}\right): q^{m} p^{n} \in C(p, q), a \in F^{m}\right\}$, where $C(p, q)$ is the bicyclic semigroup. Define a multiplication on $A(1,2)$ by

$$
\begin{equation*}
\left(a, q^{m} p^{n}\right)\left(b, q^{r} p^{s}\right)=\left(a(b) \alpha^{n}, q^{m+r-l} p^{n+s-l}\right) \tag{3}
\end{equation*}
$$

where $l=\min (n, r)$.
Proposition 3. $A(1,2)$ is an orthodox semigroup, with identity $(1,1)$ generated by $(x, q)(y, q)$ and $(1, p)$ such that

$$
\begin{equation*}
(1, p)(x, q)=(1, p)(y, q)=(1,1) \tag{4}
\end{equation*}
$$

The b and $E(A(1,2))$ of idempotents of $A(1,2)$ is

$$
\begin{equation*}
E(A(1,2))=\left\{\left(a, q^{m} p^{m}\right): a \in F^{m}\right\} \tag{5}
\end{equation*}
$$

and, for any $\left(a, q^{m} p^{n}\right) \in A(1,2)$,

$$
\begin{equation*}
V\left(a, q^{m} p^{n}\right)=\left\{\left(d, q^{n} p^{m}\right): d \in F^{n}\right\} . \tag{6}
\end{equation*}
$$

Proof. Take any $\left(a, q^{m} p^{n}\right),\left(b, q^{r} p^{s}\right),\left(c, q^{u} p^{v}\right) \in A(1,2)$. Then using Lemma 1 and the associativity of the multiplication in $C(p, q)$ we obtain

$$
\begin{aligned}
\left(\left(a, q^{m} p^{n}\right)\left(b, q^{r} p^{s}\right)\right)\left(c, q^{u} p^{v}\right) & =\left(a(b) \alpha^{n}, q^{m} p^{n} q^{r} p^{s}\right)\left(c, q^{u} p^{v}\right) \\
& =\left(a(b) \alpha^{n}(c) \alpha^{n+s-\min (n, r)}, q^{m} p^{n} q^{r} p^{s} q^{u} p^{v}\right) \\
& =\left(a\left(b(c) \alpha^{s}\right) \alpha^{n}, q^{m} p^{n} q^{r} p^{s} q^{u} p^{v}\right) \\
& =\left(a, q^{m} p^{n}\right)\left(b(c) \alpha^{s}, q^{r} p^{s} q^{u} p^{v}\right) \\
& =\left(a, q^{m} p^{n}\right)\left(\left(b, q^{r} p^{s}\right)\left(c, q^{u} p^{v}\right)\right) .
\end{aligned}
$$

So $A(1,2)$ is a semigroup. For any $\left(a, q^{m} p^{n}\right) \in A(1,2)$, with $a=a_{1} a_{2} \cdots a_{m} \in F^{m}$, we have

$$
\begin{align*}
\left(a, q^{m} p^{n}\right) & =\left(a, q^{m}\right)\left(1, p^{n}\right) \tag{7}\\
& =\left(a_{1}, q\right)\left(a_{2}, q\right) \cdots\left(a_{m}, q\right)(1, p) \cdots_{n-\text { times }}(1, p),
\end{align*}
$$

where $a_{i} \in\{x, y\}$. Hence $A(1,2)$ is generated by $(x, q),(y, q)$ and $(1, p)$. Clearly

$$
(1, p)(x, q)=(1,1)=(1, p)(y, q)
$$

The last two statements are easy to verify. Finally, since $E(A(1,2))$ is a band with identity $(1,1), A(1,2)$ is an orthodox semigroup with identity $(1,1)$.

The following corollary describes the Green's relations on $A(1,2)$.
Corollary 4. For $\left(a, q^{m} p^{n}\right)\left(b, q^{r} p^{s}\right) \in A(1,2)$:
(i) $\left(a, q^{m} p^{n}\right) L\left(b, q^{r} p^{s}\right) \Leftrightarrow n=s$,
(ii) $\quad\left(a, q^{m} p^{n}\right) R\left(b, q^{r} p^{s}\right) \Leftrightarrow a=b$,
(iii) $\left(a, q^{m} p^{n}\right) H\left(b, q^{r} p^{s}\right) \Leftrightarrow a=b$ and $n=s$,
(iv) $\left(a, q^{m} p^{n}\right) D\left(b, q^{r} p^{s}\right)$.

Proof. Follows from the corresponding descriptions of the Green's relations on $C(p, q)$.

The following result is immediate from Corollary 4.
Corollary 5. In $A(1,2)$
(i) $E(A(1,2)) \cap L_{\left(a, q^{m} p^{n}\right)}=\left\{\left(d, q^{n} p^{n}\right): d \in F^{n}\right\}$,
(ii) $E(A(1,2)) \cap R_{\left(a, q^{m} p^{n}\right)}=\left\{\left(a, q^{m} p^{m}\right)\right\}$,
(iii) $R_{(1,1)}=\left\{\left(1, p^{n}\right)\right\}$, free monoid generated by $(1, p)$,
(iv) $L_{(1,1)}=\left\{\left(a, q^{m}\right): a \in F^{m}\right\}$, free monoid generated by (x, p) and (y, q).

Definition 6 ([3]). $\bar{A}(1,2)$ is the R-unipotent bisimple fundamental orthodox semigroup generated by $\bar{p}, \bar{q}, \bar{t}$ with the relations

$$
\bar{p} \bar{q}=\bar{p} \bar{t}=1
$$

Thus every element of $\bar{A}(1,2)$ is of the form $k l$ where $k \in F_{\{\bar{q}, \bar{t}\}}^{1}$ and $l \in F_{\{\bar{p}\}}^{1}$. The set of idempotents of $\bar{A}(1,2)$ is given by

$$
\begin{equation*}
\left.E(\bar{A}(1,2))=\left\{k \overline{p^{m}}: k \in F_{(q, t)}^{1}\right\} \text { and } m=\text { length of } k\right\} . \tag{8}
\end{equation*}
$$

Theorem 7. $A(1,2)$ is isomorphic to $\bar{A}(1,2)$.
Proof. By Proposition $3,(x, q),(y, q)$ and $(1, p)$ are the generators of $A(1,2)$ such that $(1, p)(x, q)=(1, p)(y, q)=(1,1)$. So the map $\bar{p} \rightarrow(1, p), \bar{q} \rightarrow(x, q), \bar{t} \rightarrow(y, q)$ extends to a homomorphism $\chi: \bar{A}(1,2) \rightarrow A(1,2)$ of $\bar{A}(1,2)$ on to $A(1,2)$. From (5) and (8), it is clear that χ is one to-one on the idempotents of $\bar{A}(1,2)$. Since $\bar{A}(1,2)$ is fundamental, χ is an isomorphism.

Definition 8 ([6]). An inverse transversal of a regular semigroup T is an inverse subsemigroup S that contains a unique inverse of each element of T, that is $|V(x) \cap S|=1$ for all $x \in T$. In this case, we denote by x^{0} the unique element of $V(x) \cap S$, and write $x^{00}=\left(x^{0}\right)^{0}$.
Definition 9 ([9]). If U is a regular semigroup, then a coextension of U is a pair (T, φ), where T is a regular semigroup and φ is a homomorphism of T on to $U .(T, \varphi)$ is called a split coextension if there exits a homomorphism $\chi: U \rightarrow T$ such that $\chi \varphi=i d$ on $U .(T, \varphi)$ is called a coextension of U by left zero semigroups if $e \varphi^{-1}$ is a left zero semigroup for each $e \in E(U)$, the set of idempotents of U.

Proposition 10. The map $\theta: A(1,2) \rightarrow C(p, q)$ given by $\left(a, q^{m} p^{n}\right) \theta=q^{m} p^{n} d e$ fines a split coextension $(A(1,2), \theta)$ of $C(p, q)$ by left zero semigroups with a splitting $\eta: C(p, q) \rightarrow A(1,2)$ given by $\left(q^{m} p^{n}\right) \eta=\left(x^{m}, q^{m}, p^{n}\right)$.
If we identify $C(p, q)$ with $C(p, q) \eta$, via η, then $C(p, q)$ is an inverse transversal of $A(1,2)$.
Proof. It is clear that θ and η are homomorphisms with $\eta \theta=i d$ on $C(p, q)$. So that $(A(1,2), \theta)$ is a split coextension. For $q^{m} p^{m} \in E(C(p, q)), \quad\left(q^{m} p^{m}\right) \theta^{-1}=$ $\left\{\left(a, q^{m} p^{m}\right): a \in F^{m}\right\}$ is a left zero semigroup by (i) of Corollary 5 . If we identify $C(p, q)$ with $C(p, q) \eta$, via η, then for any $\left(a, q^{m} p^{n}\right) \in A(1,2), \quad V\left(a, q^{m} p^{n}\right) \cap C(p, q)=$ $\left\{\left(x^{n}, q^{n} p^{m}\right)\right\}, \quad C(p, q)$ is an inverse transversal of $A(1,2)$. This completes the proof of the proposition.

3. Description of $D S p_{4}$

Definition 11 ([3]). The double four spiral semigroup $D S p_{4}$ is the regular semigroup generated by five idempotents $\widetilde{a}, \widetilde{b}, \widetilde{c}, \widetilde{d}$ and \widetilde{e} with the relations.

$$
\widetilde{a} R \widetilde{b} L \widetilde{c} R \tilde{d} L \widetilde{e}, \widetilde{a} \widetilde{e}=\widetilde{e}=\widetilde{e} \widetilde{a}
$$

Definition 12 ([5]). Let T be a regular semigroup and S a regular subsemigroup of T. A map $\theta: T \rightarrow S$ is a split map if the following conditions are satisfied:
(S1) $x \theta=x$ for all $x \in S$,
$(S 2) V_{s}(x \theta) \subseteq V(x)$ for all $x \in T$,
(S3) $(x y) \theta=(x \theta)\left(x^{*} x y y^{*}\right) \theta(y \theta)$, for all $x, y \in T, x^{*} \in V_{s}(x \theta), y^{*} \in V_{s}(y \theta)$.
Here for $t \in T, V_{s}(t)$ (resp. $V(t)$) denotes the set of all inverses of t in $S($ resp. $T)$.
Before proceeding further let us fix some notations. Let S be a regular semigroup $E(S)$ the set of idempotents of S. For each $x \in S$, let $r(x)=R_{x} \cap E(S)=\{e \in$ $E(S): e R \quad x\}$ and $l(x)=L_{x} \cap E(S)=\{e \in E(S): e L \quad x\}$
in particular, if $e \in E(S)$ then $r(e)$ (resp. $l(e)$) is the $R-$ class (resp. L - class) of e in $E(S)$. Let $E(S) / R$ be the partially ordered set of R-classes of $E(S)$ and $E(S) / L$
be the partially ordered set of L-classes of $E(S)$, where $r(e) \geq r(f)$ if and only if $e f=f$ and $l(e) \geq l(f)$ if and only if $f e=f$ for all $e, f \in E(S)$. In the following we shall regard $E(S) / R$ and $E(S) / L$ as small categories. Thus, for example, the objects of $E(S) / R$ are the R-classes of $E(S)$ and, for any two objects $r(e), r(f)$, there is exactly one morphism, denoted $(r(e), r(f))$, from $r(e)$ to $r(f)$ if $r(e) \geq r(f)$; otherwise there are no morphisms from $r(e)$ to $r(f)$.

We denote P the category of pointed sets and base point preserving maps. Given a functor $F: C \rightarrow P$ from a category C to P. We always assume that $F_{e} \cap F_{f}=\phi$ whenever e and f are distinct objects of C. We denote the base point of F_{e} by e itself.

Definition 13 ([5]). Let S be a regular semigroup. An S-pair (A, B) is a pair of functors

$$
A: E(S) / R \rightarrow P, B: E(S) / L \rightarrow P
$$

Given an S-pair (A, B), a $B \times A$ matrix over S is a function

$$
*:(b, a) \rightarrow b \times a: \cup_{l(e) \in E(S) / L} B_{l(e)} \times \cup_{r(f) \in E(S) / R} A_{r(f)} \longrightarrow S
$$

We use the following theorem to give an alternative description of $D S p_{4}$.
Theorem 14 ([5]). Let S be a regular semigroup and let (A, B) be an S-pair. Let * be a $B \times A$ matrix over S which satisfies the following conditions:
(i) If $b \in B_{l(e)}$ and $a \in A_{r(f)}$ then $b * a \in l(e) \operatorname{Sr}(f)$.
(ii) For all $e, e^{\prime}, f, f^{\prime} \in E(S)$ with $l(e) \geq l\left(e^{\prime}\right), r(f) \geq r\left(f^{\prime}\right), a \in A_{r(f)}, b \in B_{l(e)}$, $e\left(b * a A\left(r(f), r\left(f^{\prime}\right)\right)\right) f^{\prime}=e(b * a) f^{\prime}$ and $e^{\prime}\left(b B\left(l(e), l\left(e^{\prime}\right)\right) * a\right) f=e^{\prime}(b * a) f$.
(iii) For any $b \in B_{l(e)}, a \in A_{r(f)}, b * r(f), l(e) * a \in l(e) r(f)$.

Then $W=W(S ; A, B ; *)=\left\{(a, x, b): x \in S, a \in A_{r(x)}, b \in B_{l(x)}\right\}$ is a regular semigroup under the multiplication $(a, x, b)(c, y, d)=(a A(r(x), r(z)), z, d B(l(y), l(z)))$, where $z=x(b * c) y$. The map $\eta: S \rightarrow W, x \eta=(r(x), x, l(x))$ is an injective homomorphism of S to W. If we identify S with S η, via η, then $\theta: W \rightarrow S$, defined by $(a, x, b) \theta=(r(x), x, l(x))$, is a split map such that

$$
\begin{equation*}
e w f=e(w \theta) f \quad \text { for all } e, f \in E(S), w \in W \tag{9}
\end{equation*}
$$

Conversely, every regular semigroup T with a split map $\theta: T \rightarrow S$ satisfying (9) can be constructed in this way.

Let $A: E(A(1,2)) / R(=E(A(1,2))) \rightarrow P$ and $B: E(A(1,2)) / L \rightarrow P$ be the constant functors at the two elements set $\{1,2\}$ with base point 1 . Thus, A associates with each $r(e) \in E(A(1,2)) / R$ the point set $\{1,2\}$ and with each pair $r(e) \geq r(f)$ the identity function $i d:\{1,2\} \rightarrow\{1,2\}$. Similarly, B associates with
each $l(e) \in E(A(1,2)) / L$ the pointed set $\{1,2\}$ and with each pair $l(e) \geq l(f)$ the identity function $i d:\{1,2\} \rightarrow\{1,2\}$. Then (A, B) is an $A(1,2)-$ pair. The maps

$$
*: B_{l\left(d, q^{n} p^{n}\right)} \times A_{r\left(a, q^{m} p^{m}\right)} \rightarrow A(1,2)
$$

given by

$$
\begin{aligned}
1 * 1=1 * 2=2 * 1 & =\left(x^{n}, q^{n} p^{n}\right)\left(a, q^{m} p^{m}\right) \\
\text { and } 2 * 2 & =\left(x^{n}, q^{n} p^{n}\right)(x, q)\left(a, q^{m} p^{m}\right)
\end{aligned}
$$

defines a $B \times A$ matrix $*: B \times A \rightarrow A(1,2)$ over $A(1,2)$ which clearly satisfies (i), (ii) and (iii) of Theorem 14. So

$$
\begin{aligned}
W & =W(A(1,2) ; A, B ; *) \\
& =\left\{\left(u,\left(a, q^{m} p^{n}\right), v\right):\left(a, q^{m} p^{n}\right) \in A(1,2), u \in A_{r\left(a, q^{m} p^{n}\right)}, v \in B_{l\left(a, q^{m} p^{n}\right)}\right\} \\
& =\left\{\left(u,\left(a, q^{m} p^{n}\right), v\right):\left(a, q^{m} p^{n}\right) \in A(1,2) ; u, v \in\{1,2\}\right\}
\end{aligned}
$$

with multiplication

$$
\left(u_{1},\left(a, q^{m} p^{n}\right), v_{1}\right)\left(u_{2},\left(b, q^{r} p^{s}\right), v_{2}\right)=\left(u_{1},\left(a, q^{m} p^{n}\right)\left(v_{1} * u_{2}\right)\left(b, q^{r} p^{s}\right), v_{2}\right)
$$

is a regular semigroup with a split map $\theta: W \rightarrow A(1,2)$ such that $e w f=e(w \theta) f$ where $e, f \in E(A(1,2))$, $w \in W$.

Take any $\left(a, q^{m} p^{n}\right),\left(b, q^{r} p^{s}\right) \in A(1,2)$. Then by Corollary $4,\left(a, q^{m} p^{n}\right) L\left(x^{n}, q^{n} p^{n}\right)$ and $\left(b, q^{r} p^{s}\right) R\left(b, q^{r} p^{r}\right)$. Therefore,

$$
\begin{align*}
& \left(u_{1},\left(a, q^{m} p^{n}\right), v_{1}\right)\left(u_{2},\left(b, q^{r} p^{s}\right), v_{2}\right) \tag{10}\\
= & \left(u_{1},\left(a, q^{m} p^{n}\right)\left(v_{1} * u_{2}\right)\left(b, q^{r} p^{s}\right), v_{2}\right) \\
= & \left\{\begin{array}{lll}
\left(u_{1},\left(a, q^{m} p^{n}\right)\left(b, q^{r} p^{s}\right), v_{2}\right) & \text { if } \quad v_{1}=1 \quad \text { or } \quad u_{2}=1 \\
\left(u_{1},\left(a, q^{m} p^{n}\right)(x, q)\left(b, q^{r} p^{s}\right), v_{2}\right) & \text { if } & v_{1}=u_{2}=2 .
\end{array}\right.
\end{align*}
$$

Thus
Theorem 15. The regular semigroup W coincides with $R M(A(1,2) ;\{1,2\},\{1,2\} ; p)$, the regular Rees matrix semigroup over $A(1,2)$ with sandwich matrix

$$
p=\left(\begin{array}{ll}
(1,1) & (1,1) \\
(1,1) & (x, q)
\end{array}\right)
$$

Proof. Clearly $W=R M(A(1,2) ;\{1,2\},\{1,2\} ; p\}$ as sets, and by (10), the multiplication in W coincide with the multiplication in $R M(A(1,2) ;\{1,2\},\{1,2\} ; p))$.

Theorem 16. W is isomorphic to $D S p_{4}$.
Proof. Take $\bar{a}=(1,(1,1), 2), \bar{b}=(1,(1,1), 1), \bar{c}=(2,(1,1), 1), \bar{d}=(2,(1, p), 2)$, $\bar{e}=(1,(y, q p), 2) \in W$. Then $\bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}$ are idempotents and, $\bar{a} R \bar{b} L \bar{c} R \bar{d} L \bar{e}, \overline{a e}=\bar{e}=$
$\overline{e a}$. Therefore the relations of $D S p_{4}$ are satisfied by the generators of W, the map $\widetilde{a} \rightarrow \bar{a}, \widetilde{b} \rightarrow \bar{b}, \widetilde{c} \rightarrow \bar{c}, \widetilde{d} \rightarrow \bar{d}$ and $\widetilde{e} \rightarrow \bar{e}$ extends to a homomorphism $\chi: D S p_{4} \rightarrow W$ from $D S p_{4}$ to W. Let $\left(u,\left(a, q^{m} p^{n}\right), v\right) \in W$ with $a=a_{1} a_{2} \cdots a_{m} \in F_{m}$. Then, we have
(11) $\left(u,\left(a, q^{m} p^{n}\right), v\right)=(u,(1,1), 1)\left(1,\left(a_{1}, q p\right), 2\right)(2,(1,1), 1)\left(1,\left(a_{2}, q p\right), 2\right)$

$$
\begin{aligned}
& (2,(1,1), 1) \cdots\left(1,\left(a_{m}, q p\right), 2\right)(2,(1,1), 1) \\
& {[(1,(1,1), 1)(2,(1, p), 2)]^{n}(1,(1,1), v)}
\end{aligned}
$$

This implies that W is an idempotent generated semigroup generated by $\bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}$ and hence χ is onto. It is easy to see that, the set $E(W)$ of idempotents of W is given by

$$
E(W)=\left\{\begin{array}{l}
\left(1,\left(a, q^{m} p^{m}\right), 2\right) \\
\left(1,\left(a, q^{m} p^{m}\right), 1\right) \\
\left(2,\left(a, q^{m} p^{m}\right), 1\right) \\
\left(2,\left(a, q^{m} p^{m+1}\right), 2\right), \quad a \in F^{m}
\end{array}\right.
$$

Further, for any $m, n \geq 0,\left(1,\left(a, q^{m} p^{m}\right), 2\right) \leq(1,(1,1), 2),\left(1,\left(a, q^{m} p^{m}\right), 1\right) \leq$ $(1,(1,1), 1),\left(2,\left(a, q^{m} p^{m}\right), 1\right) \leq(2,(1,1), 1)$ and $\left(2,\left(a, q^{m} p^{m+1}\right), 2\right) \leq(2,(1, p), 2)$. So χ is one-to-one on idempotents. Thus χ is an idempotent separating homomorphism from $D S p_{4}$ on to W. Since $D S p_{4}$ is fundamental, χ is an isomorphism.
Corollary 17. $D S p_{4}$ is isomorphic to the regular Rees matrix semigroup

$$
R M\left(A(1,2) ;\{1,2\},\{1,2\} ;\left(\begin{array}{cc}
(1,1) & (1,1) \\
(1,1) & (x, q)
\end{array}\right)\right) \text { over } A(1,2)
$$

Theorem 18. Let (T, θ) be a split coextension of S by left zero semigroups. Let $\bar{S}=R M(S ; I, \wedge, p)$ be a regular Rees matrix semigroup over S with sandwich matrix $\frac{p}{S}: \wedge \times I \rightarrow S$. Then the regular Rees matrix semigroup $\bar{T}=R M(T, I, \wedge, p)$ contains \bar{S} and the map $\bar{\theta}: \bar{T} \rightarrow \bar{S}$, defined by $(i, x, \lambda) \bar{\theta}=(i, x \theta, \lambda)$ defines a split coextension $(\bar{T}, \bar{\theta})$ of \bar{S} by left zero semigroups.
Proof. By [8, Lemma 1.1],

$$
\begin{aligned}
(i, x, \lambda) \in \bar{T} & \Rightarrow V(x) \cap p_{\lambda j} T p_{\gamma i} \neq \phi \text { for some } j \in I, \gamma \in \wedge \\
& \Rightarrow V(x \theta) \cap p_{\lambda j} S p_{\gamma i} \neq \phi \text { since } \theta \text { is a homomorphism } \\
& \Rightarrow(i, x \theta, \lambda) \in \bar{S}
\end{aligned}
$$

Therefore $\bar{\theta}: \bar{T} \rightarrow \bar{S}$ is a well defined map. Since θ is a homomorphism and p takes values in S on which θ is an identity map, $\bar{\theta}$ is a homomorphism. Now it is enough to prove that for each $(i, x, \lambda) \in E(\bar{S}),(i, x, \lambda) \theta^{-1}$ is a left zero semigroup. Again by [8, Lemma 1.1], $(i, x, \lambda)(i, x, \lambda)=(i, x, \lambda)$ implies that $x p_{\lambda i} x=x$; in particular $x p_{\lambda i}$ and $p_{\lambda i} x$ are idempotents of S. Take $(i, y, \lambda),(i, z, \lambda)$ in $(i, x, \lambda) \theta^{-1}$.

Then $y \theta=z \theta=x, p_{\lambda i} y, p_{\lambda i} z \in\left(p_{\lambda i} x\right) \theta^{-1}$ so that $p_{\lambda i} y p_{\lambda i}=p_{\lambda i} y$, since $\left(p_{\lambda i} x\right) \theta^{-1}$ is a left zero semigroup. Therefore

$$
(i, y, \lambda)(i, z, \lambda)=\left(i, y p_{\lambda i} z, \lambda\right)=\left(i, y p_{\lambda i} z \lambda p_{\lambda i} z, \lambda\right)=\left(i, y p_{\lambda i} y, \lambda\right)=(i, y, \lambda)
$$

Hence $(i, x, \lambda) \theta^{-1}$ is a left zero semigroup.
The fundamental four-spiral semigroup

$$
S p_{4} \cong R M\left(C(p, q) ;\{1,2\},\{1,2\} ;\left(\begin{array}{cc}
1 & 1 \\
1 & q
\end{array}\right)\right)
$$

over the bicyclic semigroup $C(p, q)([1])$. Applying Theorem 18 to the Proposition 10 , we get

Corollary 19. (See [3], Theorem 14) $D S p_{4}$ is a split coextension of $S p_{4}$ by left zero semigroups.

Remark 20. A regular semigroup T is called an idempotent - separating extension of S if there is an idempotent - separating homomorphism θ from T on to S. In [7], Meakin described the structure of $S p_{4}$ as a semigroup of ordered pairs and studied the idempotent separating extensions of $S p_{4}$ analogous to Reilly's theorem ([10]). Since we described $A(1,2)$ and $D S p_{4}$ explicitly one can study the idempotent separating extension of $A(1,2)$ and $D S p_{4}$ analogous to [10] and [7].

Problem 21. Determine the idempotent - separating extension of $A(1,2)$ and $D S p_{4}$.

References

[1] K. Byleen, Regualr four - spiral semigroups, Idempotent generated semigroups and the Rees construction, Semigroup Forum, 22(1981), 97-100.
[2] K. Byleen, J. Meakin and F.Pastjin, The fundamental four - spiral semigroup, J. Algebra, 54(1978), 6-26.
[3] K. Byleen, J. Meakin and F. Pastjin, The double four - spiral semigroup, Simon stevin, $\mathbf{5 4}$ (1980), 75-105.
[4] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys No. 7 Amer. Math. Soc., Providence, R. I., I(1961), 2(1967).
[5] M. Loganathan and V. M. Chandrasekaran, Regular semigroups with a split map, Semigroup Forum, 44(1992), 199-212.
[6] D. B. Mc Alister, and R. B. Mc Fadden, Regular semigroups with inverse transversals, Quart. J. Math. Oxford(2), 34(1983), 459-479.
[7] J. Meakin, Structure mapping, coextensions and regular four-spiral semigroups, Trans Amer. Math. Soc., 225(1979), 111-134.
[8] J. Meakin, Fundamental regular semigroups and the Rees construction, Quart. J. Math. Oxford(2), 36(1985), 91-103.
[9] J. Meakin and K. S. S Nambooripad, Coextensions of regular semigroups by rectangular bands I, Trans Amer. Math. Soc., 269(1)(1982), 197-224.
[10] N. R. Reilly, Bisimle ω-semigroups, Proc. Glasgow Math. Assoc., 7(1966), 160-167.

