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Abstract. In this paper, we first give an alternative description of the fundamental

orthodox semigroup A(1, 2). We then use this to represent the double four-spiral semigroup

DSp4 as a regular Rees matrix semigroup over A(1, 2).

1. Introduction

In [2], [3] Byleen, Meakin and Pastijn introduced the four-spiral semigroup
Sp4 and the double four-spiral semigroup DSp4 and studied their properties in
detail. These regular semigroups play an important role in the theory of idempotent
generated bismple but not completely simple semigroups. The semigroup A(1, 2)
was introduced in [3] as a tool to analyse the structure of DSp4. In this paper we
give an alternative description of A(1, 2) and we show that the bicyclic semigroup
C(p, q) is an inverse transversal of A(1, 2). We then represent DSp4 as a regular Rees
matrix semigroup over A(1, 2) which is analogous to the Byleen’s representation of
Sp4 as a regular Rees matrix semigroup over the bicyclic semigroup C(p, q) ([1]).

First we will introduce the terminologies which are used in this paper. We use
whenever possible the notation of Clifford and Preston ([4]).

Given a nonempty set A we denote by FA the free semigroup on A. The ele-
ments of FA are the nonempty finite words a1a2 · · · am, ai ∈ A, 1 ≤ i ≤ m. The
multiplication on FA is given by

(a1a2 · · · am)(b1b2 · · · bn) = a1a2 · · · amb1b2 · · · bn.
If 1 denotes the empty word, then F 1

A = FA ∪ {1} is called the free monoid on
A. For any word a = a1a2 · · · am in FA, the integer m is called the length of a and
the length of 1 is by definition 0.
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Let F = F 1
{x,y} = F{x,y}∪{1} be the free monoid on {x, y}. For each m ≥ 0, let

Fm be the subset F consisting of words of length m. Thus, for example, F 0 = {1},
F 1 = {x, y} and F 2 = {x2, xy, yx, y2}. Define α : F → F by (1)α = 1, (x)α = 1,
(y)α = 1 and (a)α = a2a3 · · · am for any word a = a1a2 · · · am of length m ≥ 2.
For each r > 0 let αr denote the composite of α r−times and let α0 = id on F.
Thus for any a = a1a2 · · · am ∈ F,

(a)αr =
{

1 if r ≥ m
ar+1ar+2 · · · am if r < m .

Lemma 1. If a = a1a2 · · · am is a word of length m and b = b1b2 · · · bn is a word
of length n, then

(1) (ab)αr = (a)αr(b)αr−min(r,m)

and

(2) (a(b)αs)αr = (a)αr(b)αr+s−min(r,m)

where m,n, r, s ≥ 0.

Proof. To prove (1), we consider the following four cases.

Case 1 : r < m. We see that

(ab)αr = ar+1 · · · amb = (a)αrb
= (a)αr(b)αr−min(r,m) = (a)αr(b)α0.

Case 2 : r = m. Then

(ab)αr = b = (a)αr(b) = (a)αr(b)α0 = (a)αr(b)αr−min(r,m).

Case 3 : m < r < m+ 1. Since

(a)αr = 1, (a)αr(b)αr−min(r,m) = (b)αr−m = br−m+1 · · · bn = (ab)αr.

Case 4 : m+ n ≤ r. In this case the sides (1) are equal to 1.
(2) follows by taking b = (b)αs in (1). �

Definition 2 ([4]). The bicyclic semigroup is the semigroup with identity ele-
ment generated by p, q subject to the relation pq = 1. Thus C(p, q) is of the form
qmpn, m, n ≥ 0 and for any qmpn, qrps ∈ C(p, q), qmpnqrps = qm+r−tpn+s−t,
where t = min(n, r). The semilattice of idempotents of C(p, q) is {qmpm : m ≥ 0}
and (qmpn)−1 = qnpm.
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The Green’s relations on C(p, q) are given by

qmpnRqrps ⇔ m = r, qmpnLqrps ⇔ n = s, qmpnHqrps ⇔ m = r, n = s

and qmpnDqrps for all qmpn, qrps ∈ C(p, q).

2. Description of A(1, 2)

Let A(1, 2) = {(a, qmpn) : qmpn ∈ C(p, q), a ∈ Fm}, where C(p, q) is the
bicyclic semigroup. Define a multiplication on A(1, 2) by

(3) (a, qmpn)(b, qrps) = (a(b)αn, qm+r−lpn+s−l)

where l = min(n, r).

Proposition 3. A(1, 2) is an orthodox semigroup, with identity (1, 1) generated by
(x, q) (y, q) and (1, p) such that

(4) (1, p)(x, q) = (1, p)(y, q) = (1, 1).

The b and E(A(1, 2)) of idempotents of A(1, 2) is

(5) E(A(1, 2)) = {(a, qmpm) : a ∈ Fm}
and, for any (a, qmpn) ∈ A(1, 2),

(6) V (a, qmpn) = {(d, qnpm) : d ∈ Fn}.

Proof. Take any (a, qmpn), (b, qrps), (c, qupv) ∈ A(1, 2). Then using Lemma 1 and
the associativity of the multiplication in C(p, q) we obtain

((a, qmpn)(b, qrps)) (c, qupv) = (a(b)αn, qmpnqrps)(c, qupv)
= (a(b)αn(c)αn+s−min(n,r), qmpnqrpsqupv)
= (a(b(c)αs)αn, qmpnqrpsqupv).
= (a, qmpn)(b(c)αs, qrpsqupv)
= (a, qmpn)((b, qrps)(c, qupv)).

So A(1, 2) is a semigroup. For any (a, qmpn) ∈ A(1, 2), with a = a1a2 · · · am ∈ Fm,
we have

(a, qmpn) = (a, qm)(1, pn)(7)
= (a1, q)(a2, q) · · · (am, q)(1, p) · · ·n−times (1, p),

where ai ∈ {x, y}. Hence A(1, 2) is generated by (x, q), (y, q) and (1, p). Clearly

(1, p)(x, q) = (1, 1) = (1, p)(y, q).
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The last two statements are easy to verify. Finally, since E(A(1, 2)) is a band
with identity (1, 1), A(1, 2) is an orthodox semigroup with identity (1, 1). �

The following corollary describes the Green’s relations on A(1, 2).

Corollary 4. For (a, qmpn)(b, qrps) ∈ A(1, 2) :

(i) (a, qmpn)L(b, qrps)⇔ n = s,

(ii) (a, qmpn)R(b, qrps)⇔ a = b,

(iii) (a, qmpn)H(b, qrps)⇔ a = b and n = s,

(iv) (a, qmpn)D(b, qrps).

Proof. Follows from the corresponding descriptions of the Green’s relations on
C(p, q). �

The following result is immediate from Corollary 4.

Corollary 5. In A(1, 2)

(i) E(A(1, 2)) ∩ L(a,qmpn) = {(d, qnpn) : d ∈ Fn},
(ii) E(A(1, 2)) ∩R(a,qmpn) = {(a, qmpm)},
(iii) R(1,1) = {(1, pn)}, free monoid generated by (1, p),
(iv) L(1,1) = {(a, qm) : a ∈ Fm}, free monoid generated by (x, p) and (y, q).

Definition 6 ([3]). A(1, 2) is the R−unipotent bisimple fundamental orthodox
semigroup generated by p, q, t with the relations

p q = p t = 1.

Thus every element of A(1, 2) is of the form kl where k ∈ F 1
{q,t} and l ∈ F 1

{p}.

The set of idempotents of A(1, 2) is given by

(8) E(A(1, 2)) = {kpm : k ∈ F 1
(q,t)} and m = length of k}.

Theorem 7. A(1, 2) is isomorphic to A(1, 2).

Proof. By Proposition 3, (x, q), (y, q) and (1, p) are the generators of A(1, 2)such
that (1, p)(x, q) = (1, p)(y, q) = (1, 1). So the map p→ (1, p), q → (x, q), t→ (y, q)
extends to a homomorphism χ : A(1, 2)→ A(1, 2) of A(1, 2) on to A(1, 2). From (5)
and (8), it is clear that χ is one to-one on the idempotents of A(1, 2). Since A(1, 2)
is fundamental, χ is an isomorphism. �
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Definition 8 ([6]). An inverse transversal of a regular semigroup T is an in-
verse subsemigroup S that contains a unique inverse of each element of T, that is
|V (x) ∩ S| = 1 for all x ∈ T. In this case, we denote by x0 the unique element of
V (x) ∩ S, and write x00 = (x0)0.

Definition 9 ([9]). If U is a regular semigroup, then a coextension of U is a
pair (T, ϕ), where T is a regular semigroup and ϕ is a homomorphism of T on to
U. (T, ϕ) is called a split coextension if there exits a homomorphism χ : U → T
such that χϕ = id on U. (T, ϕ) is called a coextension of U by left zero semigroups
if eϕ−1 is a left zero semigroup for each e ∈ E(U), the set of idempotents of U.

Proposition 10. The map θ : A(1, 2) → C(p, q) given by (a, qmpn)θ = qmpn de-
fines a split coextension (A(1, 2), θ) of C(p, q) by left zero semigroups with a splitting
η : C(p, q)→ A(1, 2) given by (qmpn)η = (xm, qm, pn).
If we identify C(p, q) with C(p, q)η, via η, then C(p, q) is an inverse transversal of
A(1, 2).

Proof. It is clear that θ and η are homomorphisms with ηθ = id on C(p, q). So
that (A(1, 2), θ) is a split coextension. For qmpm ∈ E(C(p, q)), (qmpm)θ−1 =
{(a, qmpm) : a ∈ Fm} is a left zero semigroup by (i) of Corollary 5. If we identify
C(p, q) with C(p, q)η, via η, then for any (a, qmpn) ∈ A(1, 2), V (a, qmpn)∩C(p, q) =
{(xn, qnpm)}, C(p, q) is an inverse transversal of A(1, 2). This completes the proof
of the proposition. �

3. Description of DSp4

Definition 11 ([3]). The double four spiral semigroup DSp4 is the regular semi-
group generated by five idempotents ã, b̃, c̃, d̃ and ẽ with the relations.

ã R b̃ L c̃ R d̃ L ẽ, ãẽ = ẽ = ẽ ã.

Definition 12 ([5]). Let T be a regular semigroup and S a regular subsemigroup
of T. A map θ : T → S is a split map if the following conditions are satisfied:

(S1) xθ = x for all x ∈ S,
(S2) Vs(xθ) ⊆ V (x) for all x ∈ T,
(S3) (xy)θ = (xθ)(x∗xyy∗)θ(yθ), for all x, y ∈ T, x∗ ∈ Vs(xθ), y∗ ∈ Vs(yθ).

Here for t ∈ T, Vs(t) (resp. V (t)) denotes the set of all inverses of t in S(resp. T ).
Before proceeding further let us fix some notations. Let S be a regular semigroup

E(S) the set of idempotents of S. For each x ∈ S, let r(x) = Rx ∩ E(S) = {e ∈
E(S) : eR x} and l(x) = Lx ∩ E(S) = {e ∈ E(S) : eL x}
in particular, if e ∈ E(S) then r(e) (resp. l(e)) is the R− class (resp. L− class) of e
in E(S). Let E(S)/R be the partially ordered set of R−classes of E(S) and E(S)/L
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be the partially ordered set of L−classes of E(S), where r(e) ≥ r(f) if and only if
ef = f and l(e) ≥ l(f) if and only if fe = f for all e, f ∈ E(S). In the following
we shall regard E(S)/R and E(S)/L as small categories. Thus, for example, the
objects of E(S)/R are the R−classes of E(S) and, for any two objects r(e), r(f),
there is exactly one morphism, denoted (r(e), r(f)), from r(e) to r(f) if r(e) ≥ r(f);
otherwise there are no morphisms from r(e) to r(f).

We denote P the category of pointed sets and base point preserving maps. Given
a functor F : C → P from a category C to P. We always assume that Fe ∩ Ff = φ
whenever e and f are distinct objects of C. We denote the base point of Fe by e
itself.

Definition 13 ([5]). Let S be a regular semigroup. An S−pair (A, B) is a pair
of functors

A : E(S)/R→ P, B : E(S)/L→ P.

Given an S−pair (A,B), a B ×A matrix over S is a function

∗ : (b, a)→ b× a : ∪l(e)∈E(S)/LBl(e) × ∪r(f)∈E(S)/RAr(f) −→ S.

We use the following theorem to give an alternative description of DSp4.

Theorem 14 ([5]). Let S be a regular semigroup and let (A,B) be an S−pair. Let
∗ be a B ×A matrix over S which satisfies the following conditions:

(i) If b ∈ Bl(e) and a ∈ Ar(f) then b ∗ a ∈ l(e)Sr(f).

(ii) For all e, e
′
, f, f

′ ∈ E(S) with l(e) ≥ l(e′), r(f) ≥ r(f ′), a ∈ Ar(f), b ∈ Bl(e),
e(b ∗ aA(r(f), r(f

′
)))f

′
= e(b ∗ a)f

′
and e

′
(bB(l(e), l(e

′
)) ∗ a)f = e

′
(b ∗ a)f.

(iii) For any b ∈ Bl(e), a ∈ Ar(f), b ∗ r(f), l(e) ∗ a ∈ l(e)r(f).

Then W = W (S;A,B; ∗) = {(a, x, b) : x ∈ S, a ∈ Ar(x), b ∈ Bl(x)} is a regular semi-
group under the multiplication (a, x, b)(c, y, d) = (aA(r(x), r(z)), z, dB(l(y), l(z))),
where z = x(b ∗ c)y. The map η : S →W, xη = (r(x), x, l(x)) is an injective homo-
morphism of S to W. If we identify S with Sη, via η, then θ : W → S, defined by
(a, x, b)θ = (r(x), x, l(x)), is a split map such that

(9) ewf = e(wθ)f for all e, f ∈ E(S), w ∈W.

Conversely, every regular semigroup T with a split map θ : T → S satisfying
(9) can be constructed in this way.

Let A : E(A(1, 2))/R(= E(A(1, 2))) → P and B : E(A(1, 2))/L → P be the
constant functors at the two elements set {1, 2} with base point 1. Thus, A as-
sociates with each r(e) ∈ E(A(1, 2))/R the point set {1, 2} and with each pair
r(e) ≥ r(f) the identity function id : {1, 2} → {1, 2}. Similarly, B associates with
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each l(e) ∈ E(A(1, 2))/L the pointed set {1, 2} and with each pair l(e) ≥ l(f) the
identity function id : {1, 2} → {1, 2}. Then (A,B) is an A(1, 2)− pair. The maps

∗ : Bl(d,qnpn) ×Ar(a,qmpm) → A(1, 2)

given by

1 ∗ 1 = 1 ∗ 2 = 2 ∗ 1 = (xn, qnpn)(a, qmpm)
and 2 ∗ 2 = (xn, qnpn)(x, q)(a, qmpm)

defines a B × A matrix ∗ : B × A→ A(1, 2) over A(1, 2) which clearly satisfies (i),
(ii) and (iii) of Theorem 14. So

W = W (A(1, 2);A,B; ∗)
= {(u, (a, qmpn), v) : (a, qmpn) ∈ A(1, 2), u ∈ Ar(a,qmpn), v ∈ Bl(a,qmpn)}
= {(u, (a, qmpn), v) : (a, qmpn) ∈ A(1, 2);u, v ∈ {1, 2}}

with multiplication

(u1, (a, qmpn), v1)(u2, (b, qrps), v2) = (u1, (a, qmpn)(v1 ∗ u2)(b, qrps), v2)

is a regular semigroup with a split map θ : W → A(1, 2) such that ewf = e(wθ)f
where e, f ∈ E(A(1, 2)), w ∈W.

Take any (a, qmpn), (b, qrps) ∈ A(1, 2). Then by Corollary 4, (a, qmpn)L(xn, qnpn)
and (b, qrps)R(b, qrpr). Therefore,

(u1, (a, qmpn), v1)(u2, (b, qrps), v2)(10)
= (u1, (a, qmpn)(v1 ∗ u2)(b, qrps), v2)

=
{

(u1, (a, qmpn)(b, qrps), v2) if v1 = 1 or u2 = 1
(u1, (a, qmpn)(x, q)(b, qrps), v2) if v1 = u2 = 2.

Thus

Theorem 15. The regular semigroup W coincides with RM(A(1, 2); {1, 2}, {1, 2}; p),
the regular Rees matrix semigroup over A(1, 2) with sandwich matrix

p =
(

(1, 1) (1, 1)
(1, 1) (x, q)

)
.

Proof. Clearly W = RM(A(1, 2); {1, 2}, {1, 2}; p} as sets, and by (10), the multipli-
cation in W coincide with the multiplication in RM(A(1, 2); {1, 2}, {1, 2}; p)). �
Theorem 16. W is isomorphic to DSp4.

Proof. Take a = (1, (1, 1), 2), b = (1, (1, 1), 1), c = (2, (1, 1), 1), d = (2, (1, p), 2),
e = (1, (y, qp), 2) ∈W. Then a, b, c, d, e are idempotents and, aRbLcRdLe, ae = e =
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ea. Therefore the relations of DSp4 are satisfied by the generators of W, the map
ã→ a, b̃→ b, c̃→ c, d̃→ d and ẽ→ e extends to a homomorphism χ : DSp4 → W
from DSp4 to W. Let (u, (a, qmpn), v) ∈ W with a = a1a2 · · · am ∈ Fm. Then, we
have

(u, (a, qmpn), v) = (u, (1, 1), 1)(1, (a1, qp), 2)(2, (1, 1), 1)(1, (a2, qp), 2)(11)
(2, (1, 1), 1) · · · (1, (am, qp), 2)(2, (1, 1), 1)
[(1, (1, 1), 1)(2, (1, p), 2)]n(1, (1, 1), v).

This implies that W is an idempotent generated semigroup generated by a, b, c, d, e
and hence χ is onto. It is easy to see that, the set E(W ) of idempotents of W is
given by

E(W ) =





(1, (a, qmpm), 2)
(1, (a, qmpm), 1)
(2, (a, qmpm), 1)
(2, (a, qmpm+1), 2), a ∈ Fm.

Further, for any m,n ≥ 0, (1, (a, qmpm), 2) ≤ (1, (1, 1), 2), (1, (a, qmpm), 1) ≤
(1, (1, 1), 1), (2, (a, qmpm), 1) ≤ (2, (1, 1), 1) and (2, (a, qmpm+1), 2) ≤ (2, (1, p), 2).
So χ is one-to-one on idempotents. Thus χ is an idempotent separating homomor-
phism from DSp4 on to W. Since DSp4 is fundamental, χ is an isomorphism. �

Corollary 17. DSp4 is isomorphic to the regular Rees matrix semigroup

RM

(
A(1, 2); {1, 2}, {1, 2};

(
(1, 1) (1, 1)
(1, 1) (x, q)

) )
over A(1, 2).

Theorem 18. Let (T, θ) be a split coextension of S by left zero semigroups. Let
S = RM(S; I,∧, p) be a regular Rees matrix semigroup over S with sandwich matrix
p : ∧×I → S. Then the regular Rees matrix semigroup T = RM(T, I,∧, p) contains
S and the map θ : T → S, defined by (i, x, λ)θ = (i, xθ, λ) defines a split coextension
(T , θ) of S by left zero semigroups.

Proof. By [8, Lemma 1.1],

(i, x, λ) ∈ T ⇒ V (x) ∩ pλjTpγi 6= φ for some j ∈ I, γ ∈ ∧.
⇒ V (xθ) ∩ pλjSpγi 6= φ since θ is a homomorphism
⇒ (i, xθ, λ) ∈ S.

Therefore θ : T → S is a well defined map. Since θ is a homomorphism and p
takes values in S on which θ is an identity map, θ is a homomorphism. Now it is
enough to prove that for each (i, x, λ) ∈ E(S), (i, x, λ)θ−1 is a left zero semigroup.
Again by [8, Lemma 1.1], (i, x, λ)(i, x, λ) = (i, x, λ) implies that xpλix = x; in
particular xpλi and pλix are idempotents of S. Take (i, y, λ), (i, z, λ) in (i, x, λ)θ−1.
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Then yθ = zθ = x, pλiy, pλiz ∈ (pλix)θ−1 so that pλiypλi = pλiy, since (pλix)θ−1

is a left zero semigroup. Therefore

(i, y, λ)(i, z, λ) = (i, ypλiz, λ) = (i, ypλizλpλiz, λ) = (i, ypλiy, λ) = (i, y, λ).

Hence (i, x, λ)θ−1 is a left zero semigroup. �
The fundamental four-spiral semigroup

Sp4
∼= RM

(
C(p, q); {1, 2}, {1, 2};

(
1 1
1 q

) )

over the bicyclic semigroup C(p, q) ([1]). Applying Theorem 18 to the Proposition
10, we get

Corollary 19. (See [3], Theorem 14) DSp4 is a split coextension of Sp4 by left
zero semigroups.

Remark 20. A regular semigroup T is called an idempotent - separating extension
of S if there is an idempotent - separating homomorphism θ from T on to S. In [7],
Meakin described the structure of Sp4 as a semigroup of ordered pairs and studied
the idempotent separating extensions of Sp4 analogous to Reilly’s theorem ([10]).
Since we described A(1, 2) and DSp4 explicitly one can study the idempotent -
separating extension of A(1, 2) and DSp4 analogous to [10] and [7].

Problem 21. Determine the idempotent - separating extension of A(1, 2) and
DSp4.
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