Steinhaus Graphs with Minimum Degree Two

Dongju Kim and Daekeun Lim

Department of Mathematics, Keimyung University, Daegu 704-701, Korea

e-mail: dongjukim@hanmail.net

ABSTRACT. In this paper, we classify the Steinhaus graphs with minimum degree two.

1. Introduction

Let $T = a_{12}a_{13} \cdots a_{1n}$ be an (n-1)-long string of zeros and ones. The *Steinhaus graph G*, generated by T has as its adjacency matrix, the *Steinhaus matrix*, $A(G) = [a_{ij}]$ which is obtained from the following, called the *Steinhaus property*:

$$a_{ij} = \begin{cases} 0 & \text{if } 1 \le i = j \le n; \\ a_{i-1,j-1} + a_{i-1,j} \pmod{2} & \text{if } 1 < i < j \le n; \\ a_{ji} & \text{if } 1 \le j < i \le n. \end{cases}$$

In this case, T is called the *generating string* of G. A Steinhaus triangle is the upper-triangular part of a Steinhaus matrix (excluding the diagonal) and hence, is generated by the first row (which is the generating string) in the triangle. It is obvious that there are exactly 2^{n-1} Steinhaus graphs of order n. The vertices of a Steinhaus graph are usually labelled by their corresponding row numbers. In Figure 1, the Steinhaus graph generated by 0110110 is pictured.

Let G be a Steinhaus graph of order n generated by $T = a_{12}a_{13}\cdots a_{1n}$. The partner of G, P(G), is the Steinhaus graph generated by the reverse of the last column of the adjacency matrix of G, i.e., $a_{n-1,n}a_{n-2,n}\cdots a_{1n}$ is the generating string of P(G). Note that a Steinhaus graph G is isomorphic to its partner P(G). For further results for Steinhaus graphs (See [2], [3], [4] and [6]).

We often prefer to think the sequence of zeros and ones that generates a Steinhaus graph as a number. Since the sequence 0110110 generates the graph in Figure 1, we say that this graph is generated by $k = 54 = (110110)_2$. Hence the graph with n vertices generated by k will be denoted $H_{n,k}$. In Figure 1, the Steinhaus graph is denoted by $H_{8,54}$.

2000 Mathematics Subject Classification: 05C50.

Received October 28, 2002.

Key words and phrases: Steinhaus graph, connectivity, pendent vertex, generating string.

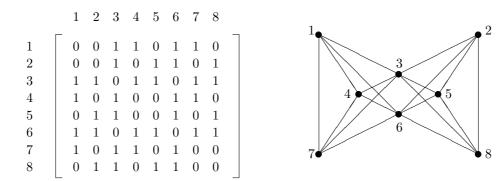


Figure 1. Steinhaus graph with the generating string 0110110

We now give some basic graph theoretical definitions. Let G be a graph. A cut vertex in G is a vertex whose deletion increases the number of components. Similarly, an edge in G is called a bridge if its deletion increases the number of components. A pendent vertex in G is a vertex of degree one. Let G be a connected graph. Let G be a set of vertices or a set of edges. If G - W is disconnected, then we say that G is G we say that G is G is G if no set of G if no set of G is a vertex of edges. If G is G if no set of G is a vertex of edges. If G is a vertex of edges. If G is a vertex of edges edges if G is G is a vertex of edges. If G is a vertex of edges edges if G is G is edges edges. If G is edges edge

Now, we give some results relating to connectivity of Steinhaus graphs.

Theorem 1.1 ([5], [6]). Let n > 5 and let G be a nonempty Steinhaus graph of order n. Then the following statements are equivalent.

- (1) G is 2-connected.
- (2) G is 2-edge-connected.
- (3) G has no pendent vertices.

Theorem 1.2 ([6]). A Steinhaus graph G is 3-edge-connected if and only if its minimum degree $\delta(G)$ is larger than two.

Theorem 1.3 ([6]). G is a Steinhaus graph with $\delta(G) \geq 3$ if and only if G is 3-connected unless G is one of the followings:

```
D_{2m}, for m \geq 5; E_{2m}, for m \geq 3;
```

 $H_{6,27} = P(H_{6,13}); H_{7,27} = P(H_{7,45}); H_{8,19} = P(H_{8,37}); H_{8,55} = P(H_{8,73}); H_{8,54}$ and $H_{9,37} = P(H_{9,147}),$ where D_n is the Steinhaus graph generated by the (n-1)-long sequence

$$0 \underbrace{10 \quad 10 \cdots 10}^{(m-2) \quad times} 00$$

when n is even and E_n is the Steinhaus graph generated by the (n-1)-long sequence (m-2) times

 $1 \underbrace{01 \quad 01 \cdots 01}_{} 10 \text{ when } n \text{ is even.}$

Note that the all graphs in Theorem 1.3 are 3-edge-connected.

Theorem 1.4 ([5]). Let n > 5 and let p(n) be the number of Steinhaus graphs of order n having a pendent vertex. Then

$$p(n) = 2\sum_{i=1}^{n-1} \delta_i - \sum_{j=2}^{\lfloor \frac{n+2}{2} \rfloor} \epsilon_j,$$

where $\delta_i = \min\{2^m, n-i\}$ for the nonnegative integer m such that $2^{m-1} < i \le 2^m$ and where

$$\epsilon_j = \left\{ \begin{array}{ll} 1 & \text{if } 2^{\lceil lg(j-1) \rceil} \text{ divides } n-j+1; \\ 0 & \text{otherwise.} \end{array} \right.$$

Therefore, the number of 2-connected and 2-edge-connected Steinhaus graphs is equal to $2^{n-1} - p(n) - 1$.

2. Minimum degree two in Steinhaus graphs

In this section, we give an equivalent expressions for Steinhaus graphs of minimum degree two. It will be useful to denote by $G_n(k;i,j)$ the Steinhaus graph of order n generated by the string $a_{ki} = 1 = a_{kj}$ and $a_{kl} = 0$ for all l except for i, j (i < j). Thus the degree of vertex k is two.

We denote S_n to be the collection of all Steinhaus graphs of order n. We set

$$A \equiv \{G_n(k; i, j) | i < j < k, i < k < j \text{ or } k < i < j\}.$$

Then

$${G \in S_n | \delta(G) = 2} = {G \in A | \delta(G) = 2}.$$

Figure 2. Pascal's square of length 8

Set $A_1 = \{G_n(k;i,j)|i < j < k\}, A_2 = \{G_n(k;i,j)|i < k < j\}$ and $A_3 = \{G_n(k;i,j)|k < i < j\}$. Then $A = A_1 \cup A_2 \cup A_3$. So,

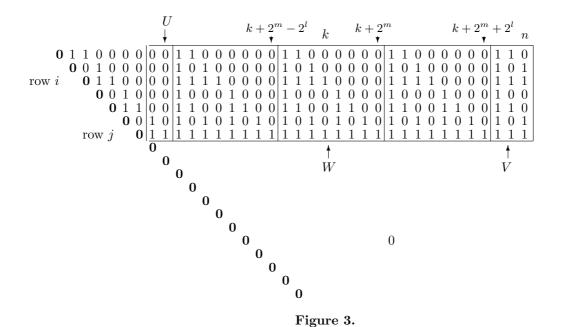
$$\{G \in S_n | \delta(G) = 2\} = \bigcup_{i=1}^{3} \{G \in A_i | \delta(G) = 2\}.$$

We now present some facts concerning Pascal's triangle modulo two. The rows of the triangle are labelled R_1, R_2, \dots , and so the rth element of R_p is $\binom{p-1}{r-1}\pmod{2}$. If Q is a string of zeros and ones, then Q^s is the string Q concatenated with itself s-1 times. For example, if Q=01, then $Q^4=0101010$. Similarly, if Q is a matrix, then Q^s is the string Q concatenated with itself s-1 times. Observe that $R_{2^m}=1^{2^m}$ because $\binom{2^m-1}{r}$ is odd for $0 \le r \le 2^m-1$. Let

$$R_t^p = R_t 0^{p-t}.$$

Then Pascal's square of length p consists of p rows $R_1^p, R_2^p, \cdots, R_p^p$ (see Figure 2).

From now, we give expressions relating to the parameters n, k, i, j which is equivalent to minimum degree two in Steinhaus graphs.



Lemma 2.1. Let $G = G_n(k; i, j) \in A_1$ with $j - i = 2^m$. Then G has a pendent vertex if and only if G satisfies one of the followings:

- (a) $n k \ge 2^m$.
- (b) $n-k \leq 2^m$ and $j=d2^q$ for some d, where $q=\lceil lg(k-i) \rceil$.
- (c) $k = n, i \le 2^m \text{ and } n j + 1 \le 2^m.$
- (d) $j < k + 2^m 2^l$, where $l = \lceil lg(j) \rceil$.

Proof. Let v be a pendent vertex in G. Let $l = \lceil lg(j) \rceil$ and so $2^{l-1} < j \le 2^l$. Since k is of degree two, v is not equal to k. We put $B = (a_{pq})$ for $p = 1, 2, \cdots, j$ and $q = j+1, j+2, \cdots, n$. Then from figure 3, it is not difficult to see that B is the form UW^sV , where W is Pascal's square of length 2^l from row $2^l - j + 1$ to row 2^l , V is a prefix of W and U is a suffix of W. In Figure 3, it is illustrated for s = 3, l = 3, the rectangle W consists of 7 rows $R_2^8, R_3^8, \cdots, R_8^8$, U is identical to the last 2 columns of W and V is identical to the first 3 columns of W. By the Steinhaus property,

(1)
$$a_{r,k-i+r} = 1$$
 for $r = 1, 2, \dots, i$.

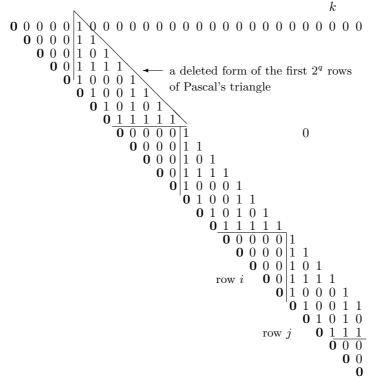


Figure 4.

Case (i): v = 1.

By (1), vertex v is adjacent to the vertex k-i+1. Also, $a_{1,k+2^m+1}=1$. Since v is a pendent vertex, $k+2^m+1>n$. So $n-k\leq 2^m$. Let $q=\lceil lg(k-i)\rceil$ and so $2^{q-1}< k-i\leq 2^q$. As depicted in Figure 4, the Steinhaus matrix A(G) mainly consists of copies of a deleted form of the first 2^q rows of Pascal's triangle. So, it is easy to see that $j=d2^q$ for some d.

Case (ii): $1 < v \le i$.

By (1), v is adjacent to k-i+v. Since v is a pendent vertex, $a_{v-1,k-i+v}=1$. This gives a contradiction because $a_{v-1,k-i+v}=0$.

Case (iii): v = i + 1.

Since $a_{i+1,k-2^m+1}=1$, v is adjacent to the vertex $k-2^m+1$. If $k \neq n$, then $a_{i+1,k+1}=1$. This gives a contradiction because i+1 is a pendent vertex in G. So k=n. If $i>2^m$ or $n-j+1>2^m$, then it is easy to see that the degree of k is at least three. This gives a contradiction because the degree of k is two. So, k=n, $i \leq 2^m$, and $n-j+1 \leq 2^m$. This is illustrated in Figure 5.

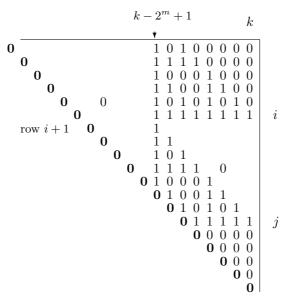


Figure 5.

Case (iv): $i + 1 < v \le j$.

An analogous argument of Case (ii) leads us to a contradiction.

Case (v): j < v < k.

In this case, $v = k + 2^m - d2^l$ for some positive integer d. So, $j < k + 2^m - 2^l$.

Case (vi): v > k.

In this case, $v = k + 2^m + d2^l$ for some integer d, and so $k + 2^m \le n$. Hence $n - k \ge 2^m$

Conversely, if $n-k\geq 2^m$, G has a pendent vertex $k+2^m$ (see Figure 3). Assume that $j=d2^q$ for some d. Then G has a pendent vertex 1 (see Figure 4). Assume that $k=n,\ i\leq 2^m$ and $n-j+1\leq 2^m$. Then G has a pendent vertex i+1 (see Figure 5). Assume that $j< k+2^m-2^l$, where $l=\lceil lg(j)\rceil$. Then by the Steinhaus property, G has a pendent vertex $k+2^m-2^l$. Hence the proof of lemma is completed.

Lemma 2.2. Let $G = G_n(k; i, j) \in A_1$ with $j - i \neq 2^m$. Then G has a pendent vertex if and only if G satisfies the followings:

$$k = n$$
 and $j - i = c2^{l_1} = d2^{l_2}$

for some c and d, where $l_1 = \lceil lg(i) \rceil$ and $l_2 = \lceil lg(n-j) \rceil$.

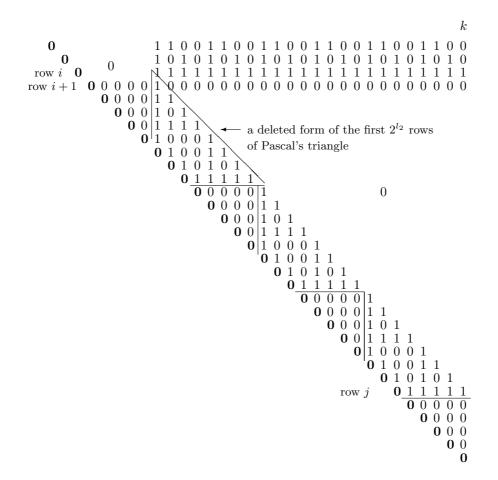


Figure 6.

Proof. Let v be a pendent vertex in G. If $2 \le v \le i$ or $i+2 \le v \le j$, then an analogous argument to Lemma 2.1 leads us to a contradiction. Also, it is not difficult to see that if v > j, then the degree of v is at least two. So v = 1 or v = i+1. Assume that v is the vertex 1. Then its adjacency matrix consists of a big Pascal's triangle. But in Pascal's triangle, it is impossible that $j-i \ne 2^m$. Assume that v is the vertex i+1. Since $a_{i+1,k-(j-i)+1}=1$, v is adjacent to the vertex k-(j-i)+1. If $k \ne n$, then $a_{i+1,k+1}=1$. This gives a contradiction because i+1 is a pendent vertex in G. So k=n. Also, it is easy to see that $j-i=c2^{l_1}=d2^{l_2}$ for some c and d, where $l_1=\lceil lg(i)\rceil$ and $l_2=\lceil lg(n-j)\rceil$. This is illustrated in Figure 6.

Conversely, if G has the case k=n and $j-i=c2^{l_1}=d2^{l_2}$, then i+1 is a pendent vertex in G. Hence the proof of lemma is completed.

By combining the above Lemmas, we prove the following theorem.

Lemma 2.3. Let $G = G_n(k; i, j) \in A_1$. Then $\delta(G) = 2$ if and only if G satisfies one of the followings:

(1) $j - i = 2^m$.

In this case, $n-k < 2^m$ and it satisfies the following conditions:

- (a) $j \neq d2^q$ for any d, where $q = \lceil lg(k-i) \rceil$.
- (b) $k \neq n, i > 2^m \text{ or } n j + 1 > 2^m.$
- (c) $j \ge k + 2^m 2^l$, where $l = \lceil lg(j) \rceil$.
- (2) $j-i \neq 2^m$. $k \neq n, \ j-i \neq c2^{l_1} \ or \ j-i \neq d2^{l_2} \ for \ any \ c \ and \ d, \ where \ l_1 = \lceil lg(i) \rceil \ and \ l_2 = \lceil lg(n-j) \rceil$.

Note that if $G \in A_3$ and $\delta(G) = 2$, then $P(G) \in A_1$ and $\delta(P(G)) = 2$. So by Theorem 2.3, we get to the following theorem.

Lemma 2.4. Let $G \in A_3$. Then $\delta(G) = 2$ if and only if $P(G) = G_n(k; i, j)$ satisfies at least one of the following conditions:

Case 1. $j - i = 2^m$.

In this case, $n-k < 2^m$ and it satisfies the following conditions:

- (a) $j \neq d2^q$ for any d, where $q = \lceil lg(k-i) \rceil$.
- (b) $k \neq n, i > 2^m \text{ or } n j + 1 > 2^m.$
- (c) $j \ge k + 2^m 2^l$, where $l = \lceil lg(j) \rceil$.

Case 2. $i - i \neq 2^m$.

 $k \neq n$ or $j - i \neq c2^{l_1}$ or $j - i \neq d2^{l_2}$ for any c and d, where $l_1 = \lceil lg(i) \rceil$ and $l_2 = \lceil lg(n-j) \rceil$.

Lemma 2.5. Let $G \in A_2 = G_n(k; i, j)$. Then G has a pendent vertex if and only if G satisfies one of the followings:

- (a) k i = 1 and j k = 1.
- (b) k-i=1 and j-k>1. $n-j+1=d2^{l_1}$ and $j-k-1=s2^{l_2}$ for some d and s, where $l_1=\lceil lg(j-k)\rceil$ and $l_2=\lceil lg(i)\rceil$.
- (c) k-i > 1 and j-k = 1. $i = d2^{l_1}$ and $k-i-1 = s2^{l_2}$ for some d and s, where $l_1 = \lceil lg(k-i) \rceil$ and $l_2 = \lceil lg(n-j+1) \rceil$.

Proof. Let v be a pendent vertex in G.

Suppose that k-i>1 and j-k>1. Then $a_{i-r,k-r}=a_{i-r,k+1}=1$ for $r=0,\cdots,i-1$ and $a_{k+r,j+r}=a_{k-1,j+r}=1$ for all $r=0,\cdots,n-j$. If $v\leq i$ or $v\geq j$, then v is not a pendent vertex. Now, since $a_{v,i}=a_{v,j}=1$ for i< v< j, v

is at least degree two. Thus in this case, any vertex of G is not a pendent vertex. This gives a contradiction. So G satisfies one of the following three cases.

Case (i):
$$k - i = 1, j - k = 1$$
.

In this case, it is easily seen to imply that G is the 1-n path.

Case (ii):
$$k - i = 1, j - k > 1$$
.

Let
$$l_1 = \lceil lg(j-k) \rceil$$
 and $l_2 = \lceil lg(i) \rceil$.

If $v \neq n$, then by Steinhaus property, v is not a pendent vertex. So, the vertex v is equal to n. In this case, G satisfies the condition $n-j+1=d2^{l_1}$, and $j-k-1=s2^{l_2}$ for some d and s. This is illustrated in Figure 7.

Case (iii)
$$k - i > 1, j - k = 1$$
.

We consider the partner of G. Then P(G) has the same case to Case (ii). So we obtain the desired result.

Conversely, if k-i=1, j-k=1, the verties 1 and n are pendent verties. Assumer that k-i=1, j-k>1. If $n-j+1=d2^{l_1}$ and $j-k-1=s2^{l_2}$ for some d and s, then n is pendent vertex (see Figure 3). By considering the partner of G, we prove the case (c). In this case, 1 is pendent vertex in G. Hence the proof of lemma is completed.

From Lemma 2.5, we get to the following theorem.

Lemma 2.6. Let $G \in A_2 = G_n(k; i, j)$. Then $\delta(G) = 2$ if and only if G satisfies one of the following cases:

- (1) k-i > 1 and j-k > 1.
- (2) k-i=1 and j-k>1. $n-j+1 \neq d2^{l_1}$, or $j-k-1 \neq s2^{l_2}$ for any d and s, where $l_1 = \lceil lg(j-k) \rceil$ and $l_2 = \lceil lg(i) \rceil$.
- (3) k-i > 1 and j-k = 1. $i \neq d2^{l_1}$ or $k-i-1 \neq s2^{l_2}$ for any d and s, where $l_1 = \lceil lg(k-i) \rceil$ and $l_2 = \lceil lg(n-j+1) \rceil$.

From previous facts, we see that the number of 3-edge-connected Steinhaus graphs is

$$2^{n-1} - (p(n) + b(n) + 1),$$

where $b(n) = |\bigcup_{i=1}^{3} \{G \in A_i | \delta(G) = 2\}|$. So, in order to see the number 3-edge-connected Steinhaus graphs, we need to count the number b(n) of all Steinhaus graphs with $\delta(G) = 2$.

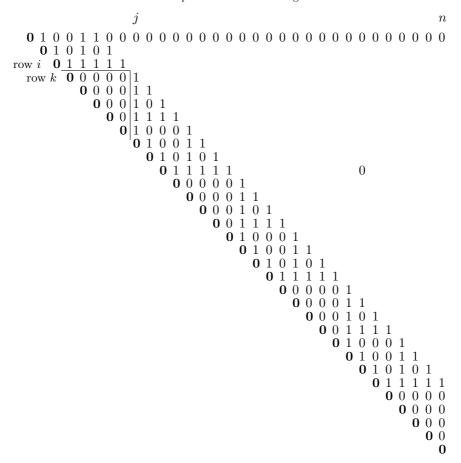


Figure 7.

References

- [1] Bollobas, B., Graph Theory, Springer-Verlag, New York, (1979).
- [2] W. M. Dymacek, Complements of Steinhaus graphs, Discrete Math., 37(2-3)(1981), 167-180.
- [3] W. M. Dymacek, Steinhaus graphs, Congr. Numer. XXIII(1979), 399-412.
- [4] H. Harborth, Solution of Steinhaus's problem with plus and minus signs, J. Combinatorial Theory, 12(A)(1972), 253-259.
- [5] D. J. Kim and D. K. Lim, 2-connected and 2-edge-connected Steinhaus graphs, Discrete Math., 256(1-2)(2002), 257-265.
- [6] W. M. Dymacek, Connectivity in Steinhaus graphs, in preparation.