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Steinhaus Graphs with Minimum Degree Two
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ABSTRACT. In this paper, we classify the Steinhaus graphs with minimum degree two.

1. Introduction

Let T' = aj2a13 - - - a1, be an (n—1)-long string of zeros and ones. The Steinhaus
graph G, generated by T has as its adjacency matrix, the Steinhaus matriz, A(G) =
[a;;] which is obtained from the following, called the Steinhaus property:

0 ifl<i=j<my
Q5 = Qi—1,j—1+ Q-1 (mod 2) fl<i<j<mg

In this case, T is called the generating string of G. A Steinhaus triangle is the
upper-triangular part of a Steinhaus matrix (excluding the diagonal) and hence,
is generated by the first row (which is the generating string) in the triangle. It is
obvious that there are exactly 2”~! Steinhaus graphs of order n. The vertices of a
Steinhaus graph are usually labelled by their corresponding row numbers. In Figure
1, the Steinhaus graph generated by 0110110 is pictured.

Let G be a Steinhaus graph of order n generated by T' = aj2a13- - a1,. The
partner of G, P(G), is the Steinhaus graph generated by the reverse of the last
column of the adjacency matrix of G, i.e., ap—1,nGn—2r - a1n is the generating
string of P(G). Note that a Steinhaus graph G is isomorphic to its partner P(G).
For further results for Steinhaus graphs (See [2], [3], [4] and [6]).

We often prefer to think the sequence of zeros and ones that generates a Stein-
haus graph as a number. Since the sequence 0110110 generates the graph in Figure
1, we say that this graph is generated by k = 54 = (110110)2. Hence the graph with
n vertices generated by k will be denoted H,, ;. In Figure 1, the Steinhaus graph is
denoted by Hg s4.
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1 00110110
2 00101101
3 1101 1 011
4 101 00110
5) 01100101
6 1101 1011
7 10110100
8 01 101100

Figure 1.  Steinhaus graph with the generating string 0110110

We now give some basic graph theoretical definitions. Let G be a graph. A
cut vertex in G is a vertex whose deletion increases the number of components.
Similarly, an edge in G is called a bridge if its deletion increases the number of
components. A pendent verter in G is a vertex of degree one. Let G be a connected
graph. Let W be a set of vertices or a set of edges. If G — W is disconnected, then
we say that W separates G. We say that G is k-connected (k > 2) if no set of k — 1
or fewer vertices separates it. Similarly, G is k-edge-connected (k > 2) if no set of
at most k — 1 edges separates it. As is usual, | X| is the cardinality of a set X. We
denote loga(x) by lg(x). Any definitions not given here can be found in [1].

Now, we give some results relating to connectivity of Steinhaus graphs.

Theorem 1.1 ([5], [6]). Let n > 5 and let G be a nonempty Steinhaus graph of
order n. Then the following statements are equivalent.

(1) G is 2-connected.
(2) G is 2-edge-connected.

(3) G has no pendent vertices.

Theorem 1.2 ([6]). A Steinhaus graph G is 3-edge-connected if and only if its
minimum degree §(G) is larger than two.

Theorem 1.3 ([6]). G is a Steinhaus graph with 6(G) > 3 if and only if G is
3-connected unless G is one of the followings:

Dy, for m > 5;

FEsp, form > 3;

Hg o7 = P(He,13); Hror = P(H745); Hsng = P(Hgz37); Hgss = P(Hg73); Hgsa
and Hg 37 = P(Hy 147),
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where D, is the Steinhaus graph generated by the (n — 1)-long sequence

(m—2) times

——7
010 10---1000

when n is even and E,, is the Steinhaus graph generated by the (n—1)-long sequence
(m—2) times

——~—
101 01---0110 when n is even.

Note that the all graphs in Theorem 1.3 are 3-edge-connected.
Theorem 1.4 ([5]). Let n > 5 and let p(n) be the number of Steinhaus graphs of

order n having a pendent vertexr. Then

L=F2)

n—1
p(n) :22(52— Z €5,
i=1

j=2
where §; = min{2™,n — i} for the nonnegative integer m such that
om=1 <4 < 2™ gnd where
. { 1 if 2M9G=DT divides n — j + 1;
;=

0 otherwise.

Therefore, the number of 2-connected and 2-edge-connected Steinhaus graphs
is equal to 2"~ — p(n) — 1.
2. Minimum degree two in Steinhaus graphs

In this section, we give an equivalent expressions for Steinhaus graphs of min-
imum degree two. It will be useful to denote by G, (k;i,j) the Steinhaus graph
of order n generated by the string ar; = 1 = ay; and ax; = 0 for all | except for
i,7(i < 7). Thus the degree of vertex k is two.

We denote S,, to be the collection of all Steinhaus graphs of order n. We set
A=A{G,(k;i,i<j<k, i<k<j or k<i<j}

Then

{G € 5,16(G) =2} = {G € A|§(G) = 2}.
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Rf — 1.0 00 00 00
R§ — 1100 0 0 0 0
R§ — 10100 000
Rf - 11110000
RE—-~ 10001000
RE - 11001100
RE — 1 0101010
RE — 1 1 111111

Figure 2. Pascal’s square of length 8

Set A1 = {Gp(k;i,5)|i < j < k}, As = {Gn(k;4,7)li < k < j} and Ag =
(G(k:i, )|k < i < j}. Then A= A, U As U As. So,

{G € S,16(G) =2} = | J{G € 4i|5(G) = 2}.

=1

We now present some facts concerning Pascal’s triangle modulo two. The rows of
the triangle are labelled Ry, R, - - -, and so the rth element of R, is (’T’:}) (mod 2).
If @Q is a string of zeros and ones, then @Q* is the string @) concatenated with itself
s — 1 times. For example, if Q = 01, then Q* = 01010101. Similarly, if Q is a
matrix, then @° is the string ) concatenated with itself s — 1 times. Observe that
Rom = 12" because (2m;1) is odd for 0 <r < 2™ — 1. Let

RP = R,0P~".

Then Pascal’s square of length p consists of p rows Ry, RE, -+ - , RD (see Figure 2).

From now, we give expressions relating to the parameters n,k, 7,7 which is
equivalent to minimum degree two in Steinhaus graphs.
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U m l m m 1
k+2m—2 k+2 k+2™ 42
| +2 i +: 242
0110000/00/11000000{11000000/21000000(110
o0100000/10100000{10100000{10100000|101
row ¢ 01100001111 0000/11110000{11110000f111
0010/00j10001000/10001000{10001000(100
o01100/11001100/11001100/11001100(110
00j10/10101010/10101010{10101010(101
row j 0111111111111 111111j11111111]111
00 f t
0 w v
0
0
0
0
0 0
0
0
0
0
Figure 3.

Lemma 2.1. Let G = G,(k;i,j) € Ay with j —i = 2™. Then G has a pendent
vertex if and only if G satisfies one of the followings:

Proof. Let v be a pendent vertex in G. Let [ = [lg(j)] and so 2!~ < j < 2!, Since
k is of degree two, v is not equal to k. We put B = (apq) for p =1,2,--- ,j and
q=j+1,7+2,---,n. Then from figure 3, it is not difficult to see that B is the
form UW*V, where W is Pascal’s square of length 2! from row 2! — j 4+ 1 to row
2!,V is a prefix of W and U is a suffix of W. In Figure 3, it is illustrated for s = 3,
[ = 3, the rectangle W consists of 7 rows RS, RS, -+, RS, U is identical to the last
2 columns of W and V is identical to the first 3 columns of W. By the Steinhaus

property,

(1) A j—itr =1 forr=1,2,--- i.
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k

00000 000000O0O0OO0OO0OO0OOOOOOOOO
0000
000
00 a deleted form of the first 27 rows
0 of Pascal’s triangle
Figure 4.
Case (i): v =1.

By (1), vertex v is adjacent to the vertex k — 4 + 1. Also, aj g42m41 = 1. Since
v is a pendent vertex, k +2™ +1 >n. Son —k < 2™. Let ¢ = [lg(k —i)] and
s0 2971 < k —i < 29. As depicted in Figure 4, the Steinhaus matrix A(G) mainly
consists of copies of a deleted form of the first 29 rows of Pascal’s triangle. So, it is
easy to see that j = d29 for some d.

Case (ii): 1 <v <.
By (1), v is adjacent to k — i+ v. Since v is a pendent vertex, a,—_1,k—i+, = 1. This
gives a contradiction because a,—1,x—it+v = 0.

Case (iii): v =17+ 1.
Since a;11,x—2m+1 = 1, v is adjacent to the vertex k — 2™ + 1. If k # n, then
ait+1,65+1 = 1. This gives a contradiction because ¢ + 1 is a pendent vertex in G. So
k=mn.Ifi>2"orn—j+1>2" then it is easy to see that the degree of k is
at least three. This gives a contradiction because the degree of k is two. So, k = n,
1< 2™ and n —j+ 1 < 2™. This is illustrated in Figure 5.
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k—2"41 k
Y
0 10100000
0 11110000
0 10001000
0 11001100
0 0 10101010
0 11111111 ¢
rowi+1 O 1
0 11
0 101
0 1111 O
010001
010011
010101
011111} g4
00000
0000
000
00
0
Figure 5.

Case (iv): i+ 1< v <j.

An analogous argument of Case (ii) leads us to a contradiction.
Case (v): j <v <k.

In this case, v = k + 2™ — d2! for some positive integer d. So, j < k + 2™ — 2L,
Case (vi): v > k.

In this case, v = k+2™4d2! for some integer d, and so k+2™ < n. Hence n—k > 2™

Conversely, if n — k > 2™, G has a pendent vertex k + 2™ ( see Figure 3).
Assume that j = d2? for some d. Then G has a pendent vertex 1 ( see Figure 4).
Assume that kK =n, i < 2™ and n — j 4+ 1 < 2™. Then G has a pendent vertex
i+ 1 ( see Figure 5). Assume that j < k+ 2™ — 2!, where | = [Ig(j)]. Then by the
Steinhaus property, G has a pendent vertex k 4+ 2™ — 2'. Hence the proof of lemma
is completed. O

Lemma 2.2. Let G = Gy(k;i,7) € Ay with j —i # 2™. Then G has a pendent
vertex if and only if G satisfies the followings:

k=n and j—i=c2" =d2k

for some ¢ and d, where Iy = [lg(i)] and ls = [lg(n — j)].



574 Dongju Kim and Daekeun Lim

k
0 110011001100110011001100
0 0 101010101010101010101010
rowi O 11111111111111111111111
rowi+1 00000 00000000O00O0OO0O0OOODODOOOOOO
0000
000
00 a deleted form of the first 2'2 rows
0 of Pascal’s triangle
0
1
01
11
00
10
01
0
1
11
101
1111
10001
010011
010101
row j 011111
00000
0000
000
00
0

Figure 6.

Proof. Let v be a pendent vertex in G. If 2 < v < iori+2 < v < j, then
an analogous argument to Lemma 2.1 leads us to a contradiction. Also, it is not
difficult to see that if v > 7, then the degree of v is at least two. Sov =1 or v =i+1.
Assume that v is the vertex 1. Then its adjacency matrix consists of a big Pascal’s
triangle. But in Pascal’s triangle, it is impossible that j —i # 2™. Assume that v is
the vertex i+ 1. Since a;41,k—(j—i)+1 = 1, v is adjacent to the vertex k — (j —i)+1.
If £ # n, then a;41 k41 = 1. This gives a contradiction because i + 1 is a pendent
vertex in G. So k = n. Also, it is easy to see that j —i = 21 = d2" for some ¢
and d, where Iy = [lg(¢)] and Iy = [lg(n — j)]. This is illustrated in Figure 6.
Conversely, if G has the case k = n and j —i = 21 = d22, then i + 1 is a
pendent vertex in G. Hence the proof of lemma is completed. O
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By combining the above Lemmas, we prove the following theorem.

Lemma 2.3. Let G = G,(k;i,5) € Ay. Then §(G) = 2 if and only if G satisfies
one of the followings:

(1) j—i=2m
In this case, n — k < 2™ and it satisfies the following conditions:
(a) j # d27 for any d, where q = [lg(k —i)].
O k#n,i>2m orn—j+1>2m.
(c) j>k+2m —2L wherel = [Ig(j)].

(2) j—1+#2™
k#mn,j—i#c2" orj—i+#d22 for any ¢ and d, where Iy = [lg(i)] and
Iy = [lg(n = j)I.

Note that if G € Az and §(G) = 2, then P(G) € A; and 6(P(G)) = 2. So by
Theorem 2.3, we get to the following theorem.

Lemma 2.4. Let G € Az. Then 6(G) = 2 if and only if P(G) = G,,(k;1i,j) satisfies
at least one of the following conditions:

Casel. j—i=2™.
In this case, n — k < 2™ and it satisfies the following conditions:
(a) j # d29 for any d, where ¢ = [lg(k —1)].
b)) k#mn,i>2"orn—j+1>2m
(c) j > k+2m —2! wherel = [lg(5)].

Case 2. j —i #2™M.
k#mnorj—i#c2h orj—i#d22 for any c and d, where Iy = [lg(i)] and
Iy = [lg(n = j)1.

Lemma 2.5. Let G € Ay = G (k;i,7). Then G has a pendent vertezx if and only if
G satisfies one of the followings:

(a) k—i=1landj—k=1

(b) k—i=1andj—k>1.
n—j+1=d2" and j—k—1= 522 for some d and s, where l; = [lg(j — k)]
and ly = [lg(i)].

(¢c) k—i>1landj—k=1.
i=d2" and k —i—1 = 522 for some d and s, where l; = [lg(k — )] and
Iy =[lg(n—j+1)].

Proof. Let v be a pendent vertex in G.

Suppose that K —¢ > 1 and j —k > 1. Then aj—rj—r = Gj—rp+1 = 1 for
r=0,---,i—1and arqrjir = ag—1,j4r = L forall r =0,--- ,n—j. Ifv <ior
v > j, then v is not a pendent vertex. Now, since a,; = a,; =1 for ¢ <v < j, v
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is at least degree two. Thus in this case, any vertex of G is not a pendent vertex.
This gives a contradiction. So G satisfies one of the following three cases.
Case (i) k—i=1,7—k=1.
In this case, it is easily seen to imply that G is the 1 — n path.
Case (ii): k—i=1,j—k> 1.
Let Iy = [lg(j — k)] and 2 = [lg(2)].

If v # n, then by Steinhaus property, v is not a pendent vertex. So, the vertex v
is equal to n. In this case, G satisfies the condition n—j+41 = d2", and j—k—1 = 52!
for some d and s. This is illustrated in Figure 7.

Case (i) k—i>1,j—k=1.

We consider the partner of G. Then P(G) has the same case to Case (ii). So we
obtain the desired result.

Conversely, if Kk —¢ = 1,7 — k = 1, the verties 1 and n are pendent verties.
Assumer that k —i=1,j —k > 1. Ifn—j+1=d2" and j — k — 1 = 52" for some
d and s, then n is pendent vertex ( see Figure 3). By considering the partner of G,
we prove the case (¢). In this case, 1 is pendent vertex in G. Hence the proof of
lemma is completed. O

From Lemma 2.5, we get to the following theorem.

Lemma 2.6. Let G € Ay = G, (k;i,5). Then §(G) = 2 if and only if G satisfies
one of the following cases:

(1) k—i>1landj—Fk>1.

(2) k—i=1landj—k>1.
n—j+1#d2", orj—k—1+# 522 for any d and s, where l; = [lg(j — k)]
and la = [lg(i)].

3) k—i>landj—k=1.
i # d2" ork—i— 1 # 522 for any d and s, where Iy = [lg(k — )] and
lo=lg(n—j+1)].

From previous facts, we see that the number of 3-edge-connected Steinhaus
graphs is

2" = (p(n) + b(n) + 1),
where b(n) = |U?:1{G € A;|6(G) = 2}|. So, in order to see the number 3-edge-

connected Steinhaus graphs, we need to count the number b(n) of all Steinhaus
graphs with 6(G) = 2.
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