KYUNGPOOK Math. J. 43(2003), 587-592

Strong Reducedness and Strong Regularity for Near-rings

YONG UK CHO Department of Mathematics, Silla University, Pusan 617-736, Korea e-mail: yucho@silla.ac.kr

YASUYUKI HIRANO Department of Mathematics, Okayama University, Okayama 700, Japan e-mail: yhirano@math.okayama-u.ac.jp

ABSTRACT. A near-ring N is called strongly reduced if, for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$, where N_c denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify all reduced, and strongly reduced near-rings of order ≤ 7 .

1. Introduction

A right near-ring N is called left strongly regular if for all $a \in N$ there exists $x \in N$ such that $a = xa^2$. Mason ([3]) introduced this notion and characterized left strongly regular zero-symmetric near-rings. Several authors ([2], [4], [5], [7] etc.) studied them. In particular, Reddy and Murty ([7]) extended some results in [3] to the non-zero symmetric case. They observed that every left strongly regular near-ring has some interesting property. In this paper we consider this property. Let N be a right near-ring and let N_c denote the constant part of N. We define N to be strongly reduced if, for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$. Obviously a strongly reduced near-ring N is reduced. We show that strong reducedness is a more general concept than the property (*) in Reddy and Murty ([7]). Left or right strongly regular near-rings form one of the important class of strongly reduced near-rings. Using strong reducibility, we characterize left strongly regular near-rings and (P_0)-near-rings. Finally we classify all reduced, and strongly reduced near-rings of order ≤ 7 using the description given by Clay ([1]).

2. Results

Throughout this paper we work with right near-rings. For notation and basic results, we shall refer to Pilz ([6]). Recall that a near-ring N is reduced if, for $a \in N$, $a^2 = 0$ implies a = 0. For a near-ring N, N_c denotes the constant part of

Received November 8, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 16Y30.

Key words and phrases: reduced, strongly reduced, left strongly regular, strongly regular.

⁵⁸⁷

N, that is, $N_c = \{x \in N \mid x = x0\}$. A near-ring N is said to be *strongly reduced* if, for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$. Obviously N is strongly reduced if and only if, for $a \in N$ and any positive integer n, $a^n \in N_c$ implies $a \in N_c$. We will show that a strongly reduced near-ring is reduced, that is, for $a \in N$, $a^2 = 0$ implies a = 0. A near-ring N is said to be *left strongly regular* if, for each $a \in N$, there exists $x \in N$ such that $a = xa^2$. Right strong regularity is defined in a symmetric way.

A subnear-ring H of a near-ring N is called *invariant* if $NH \subseteq H$ and $HN \subseteq H$. For a subset S of N, $\langle S \rangle$ stands for the invariant subnear-ring of N generated by S. We give some sufficient conditions for a near-ring to be strongly reduced.

Proposition 1.

- (1) Let N be a near-ring. If $a \in \langle a^2 \rangle$ for each $a \in N$, then N is strongly reduced. In particular, right or left strongly regular near-rings are strongly reduced.
- (2) Every integral near-ring N is strongly reduced. Hence a subdirect sum of integral near-rings is strongly reduced.

Proof. (1) Note that the constant part N_c is an invariant subnear-ring of N. Suppose $a \in \langle a^2 \rangle$ for each $a \in N$. If $a^2 \in N_c$ then $a \in \langle a^2 \rangle \subseteq N_c$.

(2) Let $a \in N$ with $a^2 \in N_c$. Then $(a - a^2)a = 0$, and hence $a = a^2 \in N_c$. \Box

We state some basic properties of a strongly reduced near-ring.

Proposition 2. Let N be a strongly reduced near-ring and let $a, b, x \in N$. Then we have the following.

- (1) N is reduced.
- (2) If $ab^n \in N_c$ for some positive integer n, then $\{ab, ba\} \cup aNb \cup bNa \subseteq N_c$.
- (3) If $ab^n = 0$ for some positive integer n, then ab = 0 and ba = b0.

Proof. (1) Assume that $a^2 = 0$. Then $a^2 \in N_c$, and hence $a \in N_c$. Then we see a = a0 = a0a = aa = 0.

(2) First suppose $ab \in N_c$. Then $(ba)^2 = baba = bab0a = bab0 \in N_c$. Since N is strongly reduced, we have $ba \in N_c$. Then we obtain $xba \in N_c$ for each $x \in N$, whence $(axb)^2 \in N_c$. By the strong reducibility of N, we obtain $axb \in N_c$ for each $x \in N$. Since $ba \in N_c$, we also obtain $bNa \subseteq N_c$. Now suppose $ab^n \in N_c$. Then $(ab)^n \in N_c$ by the above argument. Since N is strongly reduced, this implies $ab \in N_c$. Hence by the first paragraph, the claim is proved.

(3) If $ab^n = 0$ for some $n \ge 1$, then $ab \in N_c$ by (2). Hence $ab = abb^{n-1} = ab^n = 0$. Then $(ba)^2 = baba = b0 \in N_c$. Hence $ba \in N_c$. Therefore $(ba)^2 - ba \in N_c$. Then $(ba)^2 - ba = \{(ba)^2 - ba\}b = babab - bab = b0 - b0 = 0$. Hence we obtain $ba = (ba)^2 = b0$.

Clearly, if N is a zero-symmetric near-ring, then N is strongly reduced if and only if N is reduced. The following example shows that a reduced near-ring is not

588

necessarily strongly reduced.

Example 1. Let $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ with addition modulo 6 and define multiplication as follows:

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	3	3	1	3	1	1
2	0	0	2	0	2	2
3	3	3	3	3	3	3
4	0	0	4	0	4	4
5	3	3	5	3	5	5

Obviously this is a reduced near-ring. The constant part of \mathbb{Z}_6 is $\{0,3\}$. Since $1^2 = 3$ is a constant element but 1 is not, this near-ring is not strongly reduced. Also note that $1^n \neq 1$ for any integer n > 1.

Following Reddy and Murty ([7]) we say that a near-ring N has the property (*) if it satisfies

- (i) for any $a, b \in N$, ab = 0 implies ba = b0.
- (ii) for $a \in N$, $a^3 = a^2$ implies $a^2 = a$.

We give equivalent conditions for a near-ring N to be strongly reduced.

Theorem 1. The following statements are equivalent for a near-ring N:

- (1) N is strongly reduced.
- (2) For $a \in N$, $a^3 = a^2$ implies $a^2 = a$.
- (3) N has the property (*).
- (4) If $a^{n+1} = xa^{n+1}$ for $a, x \in N$ and some nonnegative integer n, then a = xa = ax.

Proof. (1) \implies (2) Assume that $a^3 = a^2$. Then $(a^2 - a)a = 0$, whence $a(a^2 - a) = a0 \in N_c$ by Proposition 2 (3). Then $(a^2 - a)a^2 = (a^3 - a^2)a = 0a = 0$. Again by Proposition 2 (3) $a^2(a^2 - a) = a^20 \in N_c$. Hence $(a^2 - a)^2 = a^2(a^2 - a) - a(a^2 - a) = a^20 - a0 = (a^2 - a)0 \in N_c$. This implies $a^2 - a \in N_c$. Hence $a^2 - a = (a^2 - a)0 = (a^2 - a)0 = (a^2 - a)a = 0$.

 $(2) \Longrightarrow (3)$ This follows from Proposition 2 (3).

(3) \implies (1) Assume $a^2 \in N_c$. Then $a^3 = a^2 a = a^2$. By condition (2), this implies $a = a^2 \in N_c$.

(1) \implies (4) Suppose $a^{n+1} = xa^{n+1}$ for some $n \ge 0$. Then $(a - xa)a^n = 0$. Hence (a - xa)a = 0 by Proposition 2 (3), and so $(a - xa)^2 \in N_c$ by Proposition 2 (2). Since N is strongly reduced, we have $a - xa \in N_c$. Then a - xa = (a - xa)a = 0, that is a = xa. Now $(a - ax)a = a^2 - axa = a^2 - a^2 = 0 \in N_c$. Hence $(a - ax)^2 = a(a - ax) - ax(a - ax) \in N_c$ by Proposition 2 (2), and so $a - ax \in N_c$. Therefore a - ax = (a - ax)a = 0.

 $(4) \Longrightarrow (2)$ This is obvious.

Left strongly regular near-rings are studied by several authors ([2]-[6], [9] etc.) Since all left strongly regular near-rings are strongly reduced, we can use it to study left strongly regular near-rings.

The following is a generalization of [7], Theorem 3.

Lemma 1. Let N be a strongly reduced near-ring and let $a, x \in N$. If $a^n = xa^{n+1}$ for some positive integer n, then $a = xa^2 = axa$ and ax = xa.

Proof. Assume that $a^n = xa^{n+1}$ for some $n \ge 1$. By Theorem 1, $a = xa^2 = axa$. Then (ax - xa)a = 0. Hence, by Proposition 1 (2), $(ax - xa)^2 = ax(ax - xa) - xa(ax - xa) \in N_c$. Since N is strongly reduced, $ax - xa \in N_c$. Hence ax - xa = (ax - xa)a = 0.

A near-ring N is said to be *left* π -regular if, for each $a \in N$, there exists a positive integer n and an element $x \in N$ such that $a^n = xa^{n+1}$. Here we give some characterizations of left strongly regular near-rings.

Theorem 2. Let N be a near-ring. Then the following statements are equivalent:

- 1) N is left strongly regular.
- 2) N is strongly reduced and left π -regular.
- 3) For each $a \in N$, there exists $x, y \in N$ such that $a = xa^2ya$.
- 4) For each $a \in N$, $a \in \langle a^2 \rangle \cap aNa$.

Proof. 1) \implies 2) - 4) By Proposition 1 (1), a right strongly regular near-ring is strongly reduced. Hence this follows from Lemma 1.

 $2) \Longrightarrow 1$ This also follows from Lemma 1.

3) \implies 1) By hypothesis, N is strongly reduced. If $a = xa^2ya$, then $ya = yxa^2(ya)$. By Theorem 1, $ya = yayxa^2$. Thus $a = xa^2yayxa^2$. This implies that N is left strongly regular.

4) \Longrightarrow 1) Since $a \in \langle a^2 \rangle$ for each $a \in N$, N is strongly reduced by Proposition 1 (1). Hence N satisfies (4) in Theorem 1. Since $a \in aNa$, there exists $x \in N$ such that a = axa. Hence $a = (ax)a = a(ax) = a^2x$. Then we have $a = axa = (a^2x)xa = a^2x^2a$. Then, by the same way as in 3) \Longrightarrow 1), we conclude that N is left strongly regular.

A near-ring is said to be *periodic* if, for each $a \in N$, there exist distinct positive integers m, n such that $a^m = a^n$. A near-ring N is called a (P_0) -near-ring if, for each $a \in N$, there exists an integer n > 1 such that $a = a^n$ (See [6], 9.4, p.289).

Obviously a (P_0) -near-ring is strongly reduced (cf. Proposition 1(1)). Hence the proof of the following corollary follows directly from Lemma 1.

Corollary 2. Let N be a near-ring. Then the following statements are equivalent:

- 1) N is periodic and strongly reduced.
- 2) N is a (P_0) -near-ring.

As a special case of this corollary, we have

Corollary 3. Let N be a finite near-ring. Then the following statements are equivalent:

- 1) N is strongly reduced.
- 2) N is left strongly regular.
- 3) N is a (P_0) -near-ring.

Now we classify all reduced, and strongly reduced near-rings of order ≤ 7 . To do it, we use Clay's tables ([1]). For example, according to [1], 2.1, p. 367, on the cyclic group \mathbb{Z}_4 of order 4, there are 12 equivalence classes of near-rings: 1)-12).

Groups	zero-symmetric	non-zero-symmetric,	non-zero-symmetric
	and reduced	reduced and non-	and strongly reduced
		strongly reduced	
\mathbb{Z}_4	8), 10), 11)		9)
V	(1), 6)	21)	(18), 20), 23)
\mathbb{Z}_5	7), 8), 10)		9)
\mathbb{Z}_6	27), 47)	(21), (32), (38), (56),	(24), (35)
		59)	(48), (49), (52), (53)
S_3	34)	(12), (16), (31)	(11), 14), 30), 39)
\mathbb{Z}_7	(18), 20), 21), 23),		19)
	24)		

Near-Rings of Order ≤ 7

Acknowledgements. The first author gratefully acknowledges the kind hospitality he enjoyed at Okayama University.

References

- [1] J. R. Clay, The near-rings on groups of low order, Math. Z., 104(1968), 364-371.
- [2] M. Hongan, Note on strongly regular near-rings, Proc. Edinburgh Math. Soc., 29(1986), 379-381.
- [3] G. Mason, Strongly regular near-rings, Proc. Edinburgh Math. Soc., 23(1980), 27-35.
- [4] G. Mason, A note on strong forms of regularity for near-rings, Indian J. of Math., 40(2)(1998), 149-153.
- [5] C. V. L. N. Murty, Generalized near-fields, Proc. Edinburgh Math. Soc., 27(1984), 21-24.
- [6] G. Pilz, Near-Rings, North-Holland Publishing Company, Amsterdam, New York, Oxford, (1983).
- [7] Y. V. Reddy and C. V. L. N. Murty, On strongly regular near-rings, Proc. Edinburgh Math. Soc., 27(1984), 61-64.

592