Hydrogen Production Technology using High Temperature Electrolysis

고온 수전해에 의한 수소 제조 기술

  • Hong, Hyun Seon (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Choo, Soo-Tae (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Yun, Yongseung (Plant Engineering Center, Institute for Advanced Engineering (IAE))
  • 홍현선 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 추수태 (고등기술연구원 플랜트 엔지니어링 센터) ;
  • 윤용승 (고등기술연구원 플랜트 엔지니어링 센터)
  • Published : 2003.12.30

Abstract

High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Keywords

Acknowledgement

Supported by : 수소에너지사업단

References

  1. H.S. Spacil and C.S. Tedmon, Jr., J. Electrochem. Soc. Vol. 116, 1969, p. 1618 https://doi.org/10.1149/1.2411642
  2. H.S. Spacil and C.S. Tedmon, Jr., J. Electrochem. Soc., Vol. 116 (1969) 1627-1633 https://doi.org/10.1149/1.2411643
  3. W. D$\ddot o$itz, E. E. Erdle and R. Streicher, In: H. Wendt, editor. Electrochemieal Hydrogen technology, Amsterdam: Elsevier, 1990
  4. W. D$\ddot o$itz, G. Dietrich, E. Erdle and R. Streicher, Int. J. Hydrogen Energy, Vol. 13 (1988) 283-287 https://doi.org/10.1016/0360-3199(88)90052-3
  5. W. D$\ddot o$nitz and E. Erdle, Int J. Hydogen Energy, Vol. 10 (1985) 291-295 https://doi.org/10.1016/0360-3199(85)90181-8
  6. F.J. Salzano, G. Skaperdas and A. Mezzina, Int. J. Hydrogen Energy, Vol. 10 (1985) 801-809 https://doi.org/10.1016/0360-3199(85)90168-5
  7. J.H. Morehouse, Int. J. Hydrogen Energy, Vol. 15 (1990) 349-356 https://doi.org/10.1016/0360-3199(90)90185-2
  8. B.G. Pound, D.J.M. Bevan and J.O'M. Bockris, Int. J. Hydrogen Energy, Vol. 6 (1981) 473-486 https://doi.org/10.1016/0360-3199(81)90079-3
  9. H. Arashi, H. Naito and H. Miura, Int. J. Hydrogen Energy, Vol. 16 (1991) 603-608 https://doi.org/10.1016/0360-3199(91)90083-U
  10. A.L. Vance, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, CA, May 20, 2093
  11. G.B. Barbi and C.M. Mari, Solid State lonics, Vol. 6 (1982) 341-351 https://doi.org/10.1016/0167-2738(82)90020-0
  12. S. Dutta, D.L. Block and R.L. Port, Int. J. Hydrogen Energy, Vol. 15 (1990) 387-395 https://doi.org/10.1016/0360-3199(90)90195-5
  13. S. Herring, R. Anderson, J. O'Brien, Paul Lessing and C. Stoots, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, C.A, May 20, 2003
  14. R.M. Bowman, J.J. Bassam and K.F. Blurton, Proc. 15th Intersociety Energy Conversion Engng Conf., (1980) 1725
  15. N.J. Maskalick, Technical Progress Report of Brookhaven National laboratory, BNL-34840 (1984) 1
  16. M.A. Liepa and A. Borhan, Int. J. Hydrogen Energy, Vol. 11 (1986) 435-442 https://doi.org/10.1016/0360-3199(86)90062-5
  17. J.O'M. Bockris, B. Dandapani, D. Cocke and J. Ghoroghchian, Int. J. Hydrogen Energy, Vol. 10 (1985) 179-201 https://doi.org/10.1016/0360-3199(85)90025-4
  18. J.E. Funk, 10th Wortd Hydrogen Energy Conference (1994)
  19. K.H. Quandt and R. Streicher, Int. J. Hydrogen Energy, Vol. 11 (1986) 309-315 https://doi.org/10.1016/0360-3199(86)90149-7
  20. J. Martinez-Frias A. Pham and S.M. Aceves, Int. J. Hydrogen Energy, Vol. 28 (2003) 483-490 https://doi.org/10.1016/S0360-3199(02)00135-0
  21. Buden et al., 19th ITCEC Proc., Vol. 1, San Francisco, C.A. (1984) 89