ALGEBRAIC OPERATIONS ON FUZZY NUMBERS USING OF LINEAR FUNCTIONS

Jae Deuk Myung

Abstract

In this paper, we introduce two types of algebraic operations on fuzzy numbers using piecewise linear functions and then show that the Zadeh implication is smaller than the Diense-Rescher implication, which is smaller than the Lukasiewicz implication. If $(f, *)$ is an available pair, then $A *_{m} B \leq A *_{p} B \leq A *_{j} B$.

1. Introduction

D. Dubois and H.Prade employed the extension principle to extend algebraic operations from crisp to fuzzy numbers([4], [5]). It is well-known that for two continuous fuzzy numbers, the extension principle method and the α-cut method are equivalent. In [2], Chung introduced the Lmap-Min method to the extend algebraic operations from crisp to fuzzy numbers using piecewise linear function and minimum (\wedge). And it was proven that for two equipotent fuzzy numbers, the Lmap-Min method and the extension principle method are equivalent.

A fuzzy set is a function A on a set X to the unit interval. For any $\alpha \in[0,1]$, the $\alpha-$ cut of a fuzzy set A on a set X, A^{α}, is the crisp set $A^{\alpha}=\{x \in X \mid A(x) \geq \alpha\}$.

For any fuzzy set A on a set X, the support of A, A^{+0}, is the set $\{x \in X \mid A(x)>0\}$.

A fuzzy set A on the set R of real numbers is said to be a $f u z z y$ number if it satisfies the following:

1) A^{α} is a non-empty closed interval for each $\alpha \in[0,1]$

[^0]2) A^{+0} is a bounded interval.
3) A is continuous on $S(A)$, where $S(A)$ denotes the closure of A^{+0} in the real line R.

We use $F(R)$ to denote the set of fuzzy numbers.
For a fuzzy number A, we write $S(A)=\left[s_{A}, S_{A}\right]$ and $A^{1}=\left[m_{A}, M_{A}\right]$.
For a fuzzy number A, the left spread of $A, L(A)$ is the interval [s_{A}, m_{A}] and the right spread of $A, R(A)$, is the interval $\left[M_{A}, S_{A}\right]$.

A continuous binary operation $*: R \times R \rightarrow R$ is said to be:

1) increasing(decreasing, resp.) if $x<y, u<v$ imply $x * u<y * v$ $(x * u>y * v$, resp).
2) hybrid if $v<y, x<u$ imply $x * y<u * v$.

Throughout this paper, we use $*$ to denote the continuous binary operation on R.

Addition $(+)$, meet (\wedge) and join (\vee) are continuous increasing binary operations on R and subtraction(-) is a continuous hybrid binary operation on R. Multiplication (\times) is a continuous increasing binary operation on $[0, \infty)$ and a continuous decreasing binary operation on $(-\infty, 0]$.
[ExtensionPrinciple] [7]. For $A, B \in F(R)$, we define a fuzzy set on $R, A *_{e} B$, by the equation $\left(A *_{e} B\right)(z)=\vee_{z=x * y} A(x) \wedge B(y)$.

Remark 1. 1. If $\left(A *_{e} B\right)(z)>0$, then there is a pair $(x, y) \in$ $S(A) \times S(B)$ such that $\left(A *_{e} B\right)(z)=A(x) \wedge B(y)$. We call such a pair the critical point of $\left(A *_{e} B\right)$ with respect to z.

For two intervals $[a, b]$ and $[c, d]$, a linear function $f:[a, b] \rightarrow[c, d]$ is said to be:

1) increasing if for each $x \in[a, b], f(x)=\frac{d-c}{b-a}(x-a)+c$,
2) decreasing if for each $x \in[a, b], f(x)=\frac{c-d}{b-a}(x-a)+d$.

For $A, B \in F(R)$, a linear function $f: S(A) \rightarrow S(B)$ is said to be:

1) piecewise increasing if $\left.f\right|_{R(A)} ^{R(B)}: R(A) \rightarrow R(B),\left.f\right|_{A^{1}} ^{B^{1}}: A^{1} \rightarrow B^{1}$ and $\left.f\right|_{L(A)} ^{L(B)}: L(A) \rightarrow L(B)$ are increasing linear functions.
2) piecewise decreasing if $\left.f\right|_{R(A)} ^{L(B)}: R(A) \rightarrow L(B),\left.f\right|_{A^{1}} ^{B^{1}}: A^{1} \rightarrow B^{1}$ and $\left.f\right|_{L(A)} ^{R(B)}: L(A) \rightarrow R(B)$ are decreasing linear functions.
3) piecewise if it is piecewise increasing or piecewise decreasing.

For $A, B \in F(R)$ and a linear function $f: S(A) \rightarrow S(B)$, we use $i(A * B)$ to denote the set $\{x * f(x) \mid x \in S(A)\}$.

Let $A, B \in F(R)$ and $f: S(A) \rightarrow S(B)$ a piecewise linear function. Then a pair $(f, *)$ is called an available pair if it satisfies one of the following:

1) f and $*$ are both increasing.
2) f is decreasing and $*$ is hybrid.

Proposition 1. 2. Let $A, B \in F(R)$ and $f: S(A) \rightarrow S(B)$ be a piecewise linear function. Then one has the following: 1) $i(A * B)$ is a closed interval in R. 2) If $(f, *)$ is an available pair, then $i(A * B)=$ $\{x * y \mid x \in S(A), y \in S(B)\}$.

Proof. See[2].
[Lmap-Min Method] [2]. Let $A, B \in F(R)$ and let $f: S(A) \rightarrow S(B)$ be a piecewise linear function. Then, we define a fuzzy set on R, $A *_{m} B$, as follows: $\left(A *_{m} B\right)(z)=A(x) \wedge B(f(x))$ if $z=x * f(x)$ for some $x \in S(A)$ and $\left(A *_{m} B\right)(z)=0$ if $z \neq x * f(x)$ for any $x \in S(A)$. Then if $(f, *)$ is an available pair, then $A *_{m} B$ is a fuzzy number.

Definition 1. 3. [2] Let $A, B \in F(R)$. A piecewise linear function $f: S(A) \rightarrow S(B)$ is said to be a shift (from A to B) if $A(x)=B(f(x))$ for each $x \in S(A)$.

Definition 1. 4. [2] 1) Two fuzzy numbers A and B are said to be i-equipotent(d-equipotent, resp.), symbolized as $A \sim B$ ($A \simeq B$, resp), provided that there is an increasing(decreasing, resp.) shift from A to B.
2) Two fuzzy numbers A and B are said to be equipotent if they are i-equipotent or d-equipotent.

Theorem 1. 5. Let $A, B \in F(R)$. Then one has the following:

1) If $A \sim B$ and $*$ are increasing, then $A *_{m} B=A *_{e} B$.
2) If $A \simeq B$ is decreasing and $*$ are hybrid, then $A *_{m} B=A *_{e} B$.

Proof. See[2].
Definition 1. 6. A fuzzy number A is said to be positive(negative, resp.) if $S(A) \subseteq[0, \infty)(S(A) \subseteq(-\infty, 0]$, resp.).

2. ALGEBRAIC OPERATIONS ON FUZZY NUMBERS

In the following theorem, we introduce the algebraic operation on fuzzy numbers using piecewise linear functions and addition(+).

Theorem 2. 1. [Lmap-Addition Method] Let $A, B \in F(R)$ and $f: S(A) \rightarrow S(B)$ a piecewise linear function. Then, we define a fuzzy set on $R, A *_{p} B$, as follows: $\left(A *_{p} B\right)(z)=(A(x)+B(f(x))) / 2$ if $z=x * f(x)$ for some $x \in S(A)$ and $\left(A *_{p} B\right)(z)=0$ if $z \neq x * f(x)$ for any $x \in S(A)$. If $(f, *)$ is an available pair, then $A *_{p} B$ is a fuzzy number.

Proof. 1) Suppose f and $*$ are both increasing. Since $\left(A *_{p} B\right)^{+0} \subseteq$ $i(A * B)$ and $i(A * B)$ is bounded, $\left(A *_{p} B\right)^{+0}$ is bounded. Since $\left(A *_{p} B\right)^{1}$ $\neq 0$ and for each $\alpha \in(0,1],\left(A *_{p} B\right)^{1} \subseteq\left(A *_{p} B\right)^{\alpha},\left(A *_{p} B\right)^{\alpha} \neq 0$ for each $\alpha \in(0,1]$. Suppose $z_{1}, z_{2} \in\left(A *_{p} B\right)^{\alpha}$ and $z_{1} \leq z \leq z_{2}$. Since $\left(A *_{p} B\right)^{\alpha} \subseteq i(A * B)$ and $i(A * B)$ is an interval, $z \in i(A * B)$ and so there is $x \in S(A)$ such that $z=x * f(x)$. Since $z_{1}, z_{2} \in\left(A *_{p} B\right)^{\alpha}$, there are $x_{1}, x_{2} \in S(A)$ such that $z_{1}=x_{1} * f\left(x_{1}\right)$ and $z_{2}=x_{2} * f\left(x_{2}\right)$. Since f and $*$ are increasing, $x_{1} \leq x \leq x_{2}$.
Case 1. $x_{1} \leq x \leq m_{A} \leq x_{2}$: Then $A\left(x_{1}\right) \leq A(x)$ and $B\left(f\left(x_{1}\right)\right) \leq$ $B(f(x))$. Hence $A\left(x_{1}\right)+B\left(f\left(x_{1}\right)\right) \leq A(x)+B(f(x))$ and so $\left(A *_{p} B\right)(z)$ $\geq \alpha$.
Case 2. $x_{1} \leq m_{A} \leq x \leq M_{A} \leq x_{2}$: Then $A\left(x_{1}\right)=1$ and $B\left(f\left(x_{1}\right)\right)=1$ and so $\left(A *_{p} B\right)(z) \geq \alpha$.
Case 3. $x_{1} \leq M_{A} \leq x \leq x_{2}$: Then $A\left(x_{2}\right) \leq A(x)$ and $B\left(f\left(x_{2}\right)\right) \leq$ $B(f(x))$. Hence $A\left(x_{2}\right)+B\left(f\left(x_{2}\right)\right) \leq A(x)+B(f(x))$ and so $\left(A *_{p} B\right)(z)$ $\geq \alpha$.

Thus $\left(A *_{p} B\right)(z)=(A(x)+B(f(x))) / 2 \geq \alpha$ and hence $z \in\left(A *_{p} B\right)^{\alpha}$. Therefore $\left(A *_{p} B\right)^{\alpha}$ is an interval. Let $z_{0}=\inf \left(A *_{p} B\right)^{\alpha}$. Then there is a decreasing sequence $<z_{n}>$ in $\left(A *_{p} B\right)^{\alpha}$ such that $z_{n} \rightarrow z_{0}$. Then for each $n \in N$ there is $x_{n} \in S(A)$ such that $z_{n}=x_{n} * f\left(x_{n}\right)$ and $(A(x)+B(f(x))) / 2 \geq \alpha$ Since f and $*$ are increasing, $\left\langle x_{n}\right\rangle$ is a decreasing sequence in $\mathrm{S}(\mathrm{A})$. Since $S(A)$ is bounded, there is $x_{0} \in S(A)$ such that $x_{n} \rightarrow x_{0}$. Since $A, B, f,+$ and $*$ are continuous, $\left(A\left(x_{n}\right)+\right.$ $\left.B\left(f\left(x_{n}\right)\right)\right) / 2 \rightarrow\left(A\left(x_{0}\right)+B\left(f\left(x_{0}\right)\right)\right) / 2$ and $z_{n} \rightarrow x_{0} * f\left(x_{0}\right)=z_{0}$. Since $\left(A\left(x_{n}\right)+B\left(f\left(x_{n}\right)\right)\right) / 2 \geq \alpha$ for each $n \in N,\left(A\left(x_{0}\right)+B\left(f\left(x_{0}\right)\right)\right) / 2 \geq \alpha$ and so $z_{0} \in\left(A *_{p} B\right)^{\alpha}$. Similarly we have $\sup \left(A *_{p} B\right)^{\alpha} \in\left(A *_{p} B\right)^{\alpha}$. In
all, $\left(A *_{p} B\right)^{\alpha}$ is a non-empty closed interval. Since $f, *, A, B$ and + are continuous, $\left(A *_{p} B\right)$ is continuous. This completes the proof.

Using the exactly same argument as for the case f and $*$ are both increasing, the case where f is decreasing and $*$ is hybrid can be proved.

In the following theorem, we introduce the algebraic operation on fuzzy numbers using piecewise linear functions and maximum (\vee).

Theorem 2. 2. [Lmap-Max Method] Let $A, B \in F(R)$ and $f: S(A)$ $\rightarrow S(B)$ a piecewise linear function. Then, we define a fuzzy set on R, $A *_{j} B$, as follows: $\left(A *_{j} B\right)(z)=A(x) \vee B(f(x))$ if $z=x * f(x)$ for some $x \in S(A)$ and $\left(A *_{j} B\right)(z)=0$ if $z \neq x * f(x)$ for any $x \in S(A)$. If $(f, *)$ is an available pair, then $A *_{p} B$ is a fuzzy number.

Proof. 1) Suppose f and $*$ are both increasing. Since $\left(A *_{j} B\right)^{+0} \subseteq$ $i(A * B)$ and $i(A * B)$ is bounded, $\left(A *_{j} B\right)^{+0}$ is bounded. Since $\left(A *_{j} B\right)^{1}$ $\neq 0$ and for each $\alpha \in(0,1] .\left(A *_{j} B\right)^{1} \subseteq\left(A *_{j} B\right)^{\alpha},\left(A *_{p} B\right)^{\alpha} \neq 0$ for each $\alpha \in(0,1]$. Suppose $z_{1}, z_{2} \in\left(A *_{j} B\right)^{\alpha}$ and $z_{1} \leq z \leq z_{2}$. Since $\left(A *_{j} B\right)^{\alpha} \subseteq i(A * B)$ and $i(A * B)$ is an interval, $z \in i(A * B)$ and so there is $x \in S(A)$ such that $z=x * f(x)$. Since $z_{1}, z_{2} \in\left(A *_{j} B\right)^{\alpha}$, there are $x_{1}, x_{2} \in S(A)$ such that $z_{1}=x_{1} * f\left(x_{1}\right)$ and $z_{2}=x_{2} * f\left(x_{2}\right)$. Since f and $*$ are increasing, $x_{1} \leq x \leq x_{2}$.
Case 1. $x_{1} \leq x \leq m_{A} \leq x_{2}$: Then $A\left(x_{1}\right) \leq A(x)$ and $B\left(f\left(x_{1}\right)\right) \leq$ $B(f(x))$. Hence $A\left(x_{1}\right) \vee B\left(f\left(x_{1}\right)\right) \leq A(x) \vee B(f(x))$ and so $\left(A *_{j} B\right)(z)$ $\geq \alpha$.
Case 2. $x_{1} \leq m_{A} \leq x \leq M_{A} \leq x_{2}$: Then $A\left(x_{1}\right)=1$ and $B\left(f\left(x_{1}\right)\right)=1$ and so $\left(A *_{j} B\right)(z) \geq \alpha$.
Case 3. $x_{1} \leq M_{A} \leq x \leq x_{2}$: Then $A\left(x_{2}\right) \leq A(x)$ and $B\left(f\left(x_{2}\right)\right) \leq$ $B(f(x))$. Hence $A\left(x_{2}\right) \vee B\left(f\left(x_{2}\right)\right) \leq A(x) \vee B(f(x))$ and so $\left(A *_{j} B\right)(z)$ $\geq \alpha$.

Thus $\left(A *_{j} B\right)(z)=A(x) \vee B(f(x)) \geq \alpha$ and hence $z \in\left(A *_{j} B\right)^{\alpha}$. Therefore $\left(A *_{j} B\right)^{\alpha}$ is an interval. Let $z_{0}=\inf \left(A *_{j} B\right)^{\alpha}$. Then there is a decreasing sequence $<z_{n}>$ in $\left(A *_{j} B\right)^{\alpha}$ such that $z_{n} \rightarrow z_{0}$. Then for each $n \in N$ there is $x_{n} \in S(A)$ such that $z_{n}=x_{n} * f\left(x_{n}\right)$ and $A(x) \vee B(f(x)) \geq \alpha$ Since f and $*$ are increasing, $\left\langle x_{n}\right\rangle$ is a decreasing sequence in $\mathrm{S}(\mathrm{A})$. Since $S(A)$ is bounded, there is $x_{0} \in S(A)$ such that $x_{n} \rightarrow x_{0}$. Since A, B, f, \vee and $*$ are continuous, $A\left(x_{n}\right) \vee B\left(f\left(x_{n}\right)\right) \rightarrow$ $A\left(x_{0}\right) \vee B\left(f\left(x_{0}\right)\right)$ and $z_{n} \rightarrow x_{0} * f\left(x_{0}\right)=z_{0}$. Since $A\left(x_{n}\right) \vee B\left(f\left(x_{n}\right)\right) \geq \alpha$
for each $n \in N, A\left(x_{0}\right) \vee B\left(f\left(x_{0}\right)\right) \geq \alpha$ and so $z_{0} \in\left(A *_{j} B\right)^{\alpha}$. Similarly we have $\sup \left(A *_{j} B\right)^{\alpha} \in\left(A *_{j} B\right)^{\alpha}$. In all, $\left(A *_{j} B\right)^{\alpha}$ is a non-empty closed interval. Since $f, *, A, B$ and \vee are continuous, $\left(A *_{j} B\right)$ is continuous. This completes the proof.

Using the exactly same argument as for the case f and $*$ are both increasing, the case where f is decreasing and $*$ is hybrid can be proved.

In the following two theorems, we show that $\left\{*_{m}, *_{p}, *_{e}\right.$ and $\left.*_{j}\right\}$ is a lattice.

Theorem 2. 3. Let $A, B \in F(R)$. If $(f, *)$ is an available pair, then $A *_{m} B \leq A *_{p} B \leq A *_{j} B$.

Proof. Straightforward.

Theorem 2. 4. Let $A, B \in F(R)$. If $(f, *)$ is an available pair, then $A *_{m} B \leq A *_{e} B \leq A *_{j} B$.

Proof. Let $\left(x_{0}, y_{0}\right)$ be the critical point of $A *_{e} B$ with respect to $z \in i(A * B)$ and $x \in S(A)$ such that $\left(A *_{j} B\right)(z)=A(x) \vee B(f(x))$. Suppose that f and $*$ are both increasing. If $x=x_{0}$, then $\left(A *_{e} B\right)(z)$ $\leq\left(A *_{j} B\right)(z)$. Suppose $x_{0}<x$. Since f and $*$ are both increasing, $y_{0} \geq f(x)$ and so $A\left(x_{0}\right)<A(x)$ or $B\left(y_{0}\right)<B(f(x))$. Thus $\left(A *_{e} B\right)(z)$ $\leq\left(A *_{j} B\right)(z)$. Suppose $x_{0}>x$. Since f and $*$ are both increasing, $y_{0} \leq f(x)$ and so $A\left(x_{0}\right)<A(x)$ or $B\left(y_{0}\right)<B(f(x))$. Thus $\left(A *_{e} B\right)(z)$ $\leq\left(A *_{j} B\right)(z)$. Therefore $A *_{e} B \leq A *_{j} B$.

Using the exactly same argument as for the case f and $*$ are both increasing, the case where f is decreasing and $*$ is hybrid can be proved.

Corollary 2. 5. Let $A, B \in F(R)$. Then one has the following:

1) If $A \sim B$ and $*$ are increasing, then $A *_{m} B=A{ }_{p} B=A *_{e} B=$ $A *_{j} B$.
2) 3) If $A \simeq B$ is decreasing and $*$ are hybrid, then $A *_{m} B=A *_{p} B=$ $A *_{e} B=A{ }_{j} B$.

Proof. Straightforward.

References

1. Kauffman, A and M. M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Applications, Van Nostrand, New York, 1985.
2. S. H. Chung, Algebraic operations on fuzzy numbers and fuzzy equations, Fuzzy Sets and Systems, submitted.
3. Dubois. D and H. Prade, Fuzzy real algebra: Some results. FSS 2, 1979, 327348.
4. Dubois. D and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, 1980.
5. Dubois. D and H. Prade, Fuzzy numbers: an overview In: Bezdek, J. C., ed., Analysis of Fuzzy Information Vol.1: Mathematics and Logic. CRC Press, Boca, Raton, FL, 1987, 3-29.
6. Dubois. D and H. Prade, Possibility Theory, New York, London, 1988.
7. Geordge, J. klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, New Jersey, 1995.

[^0]: Received August 9, 2001.
 2000 Mathematics Subject Classification: 03E72, 06D72.
 Key words and phrases: fuzzy number, Lmap-Min method, Lmap-Addition method, extension principle method, Lmap-Max method, Piecewise linear function, shift.

 This research is supported by Kyung Hee University.

