CONFORMAL CHANGE OF THE VECTOR S_{ω} IN 5-DIMENSIONAL g-UFT

Chung Hyun Cho

Abstract

We investigate change of the vector S_{ω} induced by the conformal change in 5 -dimensional g-unified field theory. These topics will be studied for the second class in 5 -dimensional case

1. Introduction

The conformal change in a generalized 4-dimensional Riemannian space connected by an Einstein's connection was primarily studied by HLAVAT Ý $([8], 1957)$. $\operatorname{CHUNG}([6], 1968)$ also investigated the same topic in 4-dimensional ${ }^{*} g$-unified field theory.

The Einstein's connection induced by the conformal change for all classes in 3-dimensional case, for the second and third classes in 5dimensional case, and for the first class in 5 -dimensional $* g$-UFT, and for the second class in 5 -dimensional g-UFT were investigated by $\mathrm{CHO}([1]$, 1992, [2],1994, [3],1996, [4],1998).

In the present paper, we investigate change of the vector S_{ω} induced by the conformal change in 5 -dimensional g-unified field theory. These topics will be studied for the second class in 5 -dimensional case.

2. Preliminaries

This chapter is a brief collection of basic concepts, notations, theorems, and results needed in our further considerations. They may be referred to $\operatorname{CHUNG}([5], 1988 ; ~[3], 1988), \mathrm{CHO}([1], 1992 ; ~[2], 1994 ; ~[3], 1996 ;$ [4],1998).

[^0]2.1. n-dimensional g-unified field theory. The n-dimensional g unified field theory (n - g-UFT hereafter) was originally suggested by $\operatorname{HLAVATÝ}([8], 1957)$ and systematically introduced by CHUNG([7],1963).

Let $X_{n}{ }^{1}$ be an n-dimensional generalized Riemannian manifold, referred to a real coordinate system x^{ν} obeying coordinate transformations $x^{\nu} \rightarrow x^{\nu^{\prime}}$, for which

$$
\begin{equation*}
\operatorname{Det}\left(\left(\frac{\partial x}{\partial x^{\prime}}\right)\right) \neq 0 . \tag{2.1}
\end{equation*}
$$

In the usual Einstein's n-dimensional unified field theory, the manifold X_{n} is endowed with a general real nonsymmetric tensor $g_{\lambda \mu}$ which may be split into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}{ }^{2}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Det}\left(\left(g_{\lambda \mu}\right)\right) \neq 0 \quad \operatorname{Det}\left(\left(h_{\lambda \mu}\right)\right) \neq 0 . \tag{2.3}
\end{equation*}
$$

Therefore we may define a unique tensor $h^{\lambda \nu}=h^{\nu \lambda}$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} . \tag{2.4}
\end{equation*}
$$

In our n - g-UFT, the tensors $h_{\lambda \mu}$ and $h^{\lambda \nu}$ will serve for raising and/or lowering indices of the tensors in X_{n} in the usual manner.

The manifold X_{n} is connected by a general real connection $\Gamma_{\omega \mu}^{\nu}$ with the following transformation rule :

$$
\begin{equation*}
\Gamma_{\omega^{\prime} \mu^{\prime}}^{\nu^{\prime}}=\frac{\partial x^{\nu^{\prime}}}{\partial x^{\alpha}}\left(\frac{\partial x^{\beta}}{\partial x^{\omega^{\prime}}} \cdot \frac{\partial x^{\gamma}}{\partial x^{\mu^{\prime}}} \Gamma_{\beta \gamma}^{\alpha}+\frac{\partial^{2} x^{\alpha}}{\partial x^{\omega^{\prime}} \partial x^{\mu^{\prime}}}\right) \tag{2.5}
\end{equation*}
$$

and satisfies the system of Einstein's equations

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha} \tag{2.6}
\end{equation*}
$$

where D_{ω} denotes the covariant derivative with respect to $\Gamma_{\lambda \mu}^{\nu}$ and

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}=\Gamma_{[\lambda \mu]}^{\nu} \tag{2.7}
\end{equation*}
$$

is the torsion tensor of $\Gamma_{\lambda \mu}^{\nu}$. The connection $\Gamma_{\lambda \mu}^{\nu}$ satisfying (2.6) is called the Einstein's connection.

[^1]In our further considerations, the following scalars, tensors, abbreviations, and notations for $p=0,1,2, \cdots$ are frequently used :

$$
\begin{gather*}
\mathfrak{g}=\operatorname{Det}\left(\left(g_{\lambda \mu}\right)\right) \neq 0, \quad \mathfrak{h}=\operatorname{Det}\left(\left(h_{\lambda \mu}\right)\right) \neq 0, \tag{2.8a}\\
\mathfrak{t}=\operatorname{Det}\left(\left(k_{\lambda \mu}\right)\right), \\
g=\frac{\mathfrak{g}}{\mathfrak{h}}, \quad k=\frac{\mathfrak{t}}{\mathfrak{h}}, \tag{2.8b}\\
K_{p}=k_{\left[\alpha_{1}\right.} \alpha^{1} \cdots k_{\left.\alpha_{p}\right]}^{\alpha^{p}}, \quad(p=0,1,2, \cdots) \tag{2.8c}\\
{ }^{(0)} k_{\lambda}{ }^{\nu}=\delta_{\lambda}{ }^{\nu}, \quad{ }^{(1)} k_{\lambda}{ }^{\nu}=k_{\lambda}{ }^{\nu}, \quad{ }^{(p)} k_{\lambda}^{\alpha}={ }^{(p-1)} k_{\lambda}{ }^{\alpha} k_{\alpha}{ }^{\nu}, \tag{2.8d}\\
K_{\omega \mu \nu}=\nabla_{\nu} k_{\omega \mu}+\nabla_{\omega} k_{\nu \mu}+\nabla_{\mu} k_{\omega \nu}, \tag{2.8e}\\
\sigma= \begin{cases}1 & \text { if } n \text { is odd } \\
0 & \text { if } n \text { is even }\end{cases} \tag{2.8f}
\end{gather*}
$$

where ∇_{ω} is the symbolic vector of the convariant derivative with respect to the Christoffel symbols $\left\{{ }_{\lambda \mu}^{\nu}\right\}$ defined by $h_{\lambda \mu}$. The scalars and vectors introduced in (2.8) satisfy

$$
\begin{gather*}
K_{0}=1 ; K_{n}=k \quad \text { if } n \text { is even; } \quad K_{p}=0 \quad \text { if } p \text { is odd, } \tag{2.9a}\\
g=1+K_{2}+\cdots+K_{n-\sigma}, \tag{2.9b}\\
\quad{ }^{(p)} k_{\lambda \mu}=(-1)^{p(p)} k_{\mu \lambda}, \quad{ }^{(p)} k^{\lambda \mu}=(-1)^{p(p)} k^{\nu \lambda} . \tag{2.9c}
\end{gather*}
$$

Furthermore, we also use the following useful abbreviations, denoting an arbitrary tensor $T_{\omega \mu \nu}$, skew-symmetric in the first two indices, by T :

$$
\begin{align*}
& \stackrel{p q r}{T}=\stackrel{p q r}{T}_{\omega \mu \nu}=T_{\alpha \beta \gamma}{ }^{(p)} k_{\omega}{ }^{\alpha(q)} k_{\mu}{ }^{\beta(r)} k_{\nu}{ }^{\gamma}, \tag{2.10a}\\
& T=T_{\omega \mu \nu}=\stackrel{000}{T}, \tag{2.10b}\\
& 2{ }^{p q r}{ }_{\omega[\lambda \mu]}=\stackrel{p q r}{T}_{\omega \lambda \mu}-\stackrel{p q r}{T}_{\omega \mu \lambda}, \tag{2.10c}\\
& 2 \stackrel{(p q) r}{T}_{\omega \lambda \mu}=\stackrel{p q r}{T}_{\omega \lambda \mu}+\stackrel{q p r}{T}_{\omega \lambda \mu} . \tag{2.10d}
\end{align*}
$$

We then have

$$
\begin{equation*}
\stackrel{p q r}{T}_{\omega \lambda \mu}=-\stackrel{q p r}{T}_{\lambda \omega \mu} \tag{2.11}
\end{equation*}
$$

If the system (2.6) admits $\Gamma_{\lambda \mu}^{\nu}$, using the above abbreviations it was shown that the connection is of the form

$$
\begin{equation*}
\Gamma_{\omega \mu}^{\nu}=\left\{{ }_{\omega \mu}^{\nu}\right\}+S_{\omega \mu}{ }^{\nu}+U_{\omega \mu}^{\nu} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{\nu \omega \mu}=2 \stackrel{001}{S}_{\nu(\omega \mu)} \tag{2.13}
\end{equation*}
$$

The above two relations show that our problem of determining $\Gamma_{\omega \mu}^{\nu}$ in terms of $g_{\lambda \mu}$ is reduced to that of studying the tensor $S_{\omega \mu}{ }^{\nu}$. On the other hand, it has also been shown that the tensor $S_{\omega \mu}{ }^{\nu}$ satisfies

$$
\begin{equation*}
S=B-3 S \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
2 B_{\omega \mu \nu}=K_{\omega \mu \nu}+3 K_{\alpha[\mu \beta} k_{\omega]}^{\alpha} k_{\nu}^{\beta} . \tag{2.15}
\end{equation*}
$$

Definition 2.1. The vector S_{ω} defined by

$$
\begin{equation*}
S_{\omega}=S_{\omega \alpha}{ }^{\alpha} . \tag{2.16}
\end{equation*}
$$

2.2. Some results for the second class in 5- g-UFT. In this section, we introduce some results of $5-g$-UFT without proof, which are needed in our subsequent considerations.

They may be referred to $\mathrm{CHO}([1], 1992)$.
Definition 2.2. In 5- g-UFT, the tensor $g_{\lambda \mu}\left(k_{\lambda \mu}\right)$ is said to be the second class, if $K_{2} \neq 0, K_{4}=0$.

Theorem 2.3 (Main Recurrence Relations). For the second class in 5 -UFT, the following recurrence relation hold

$$
\begin{equation*}
{ }^{(p+3)} k_{\lambda}^{\nu}=-K_{2}^{(p+1)} k_{\lambda}^{\nu}, \quad(p=0,1,2, \cdots) . \tag{2.17}
\end{equation*}
$$

Theorem 2.4 (For The Second Class In 5 - g-UFT). A necessary and sufficient condition for the existence and uniqueness of the solution of (2.5) is

$$
\begin{equation*}
1-\left(K_{2}\right)^{2} \neq 0 \tag{2.18}
\end{equation*}
$$

If the condition (2.18) is satisfied, the unique solution of (2.14) is given by

$$
\begin{equation*}
\left(1-K_{2}^{2}\right)(S-B)=-2 \stackrel{(10) 1}{B}+\left(K_{2}-1\right) \stackrel{110}{B}_{B}+2 \stackrel{(20) 2}{B}^{(112}{ }^{12} . \tag{2.19}
\end{equation*}
$$

3. Conformal change of the 5 -dimensional vector S_{ω} for the second class

In this final chapter we investigate the change $S_{\omega} \rightarrow \bar{S}_{\omega}$ of the vector induced by the conformal change of the tensor $g_{\lambda \mu}$, using the recurrence relations and theorems introduced in the preceding chapter.

We say that X_{n} and \bar{X}_{n} are conformal if and only if

$$
\begin{equation*}
\bar{g}_{\lambda \mu}(x)=e^{\Omega} g_{\lambda \mu}(x) \tag{3.1}
\end{equation*}
$$

where $\Omega=\Omega(x)$ is an least twice differentiable function. This conformal change enforces a change of the vector S_{ω}. An explicit representation of the change of 5 -dimensional vector S_{ω} for the second class will be exhibited in this chapter.

Agreement 3.1. Throughout this section, we agree that, if T is a function of $g_{\lambda \mu}$, then we denote \bar{T} the same function of $\bar{g}_{\lambda \mu}$. In particular, if T is a tensor, so is \bar{T}. Furthermore, the indices of $T(\bar{T})$ will be raised and/or lowered by means of $h^{\lambda \nu}\left(\bar{h}^{\lambda \nu}\right)$ and/or $h_{\lambda \nu}\left(\bar{h}_{\lambda \nu}\right)$.

The results in the following theorems are needed in our further considerations. They may be referred to $\mathrm{CHO}([1], 1992,[2], 1994,[3], 1996)$.

THEOREM 3.2. In n - g-UFT, the conformal change (3.1) induces the following changes:

$$
\begin{align*}
{ }^{(p)} \bar{k}_{\lambda \mu}=e^{\Omega(p)} k_{\lambda \mu}, & { }^{(p)} \bar{k}_{\lambda}={ }^{(p)} k_{\lambda}^{\nu}, \quad{ }^{(p)} \bar{k}^{\lambda \mu}=e^{-\Omega(p)} k^{\lambda \mu}, \tag{3.2a}\\
\bar{g}=g, & \bar{K}_{p}=K_{p}, \quad(p=1,2, \cdots) . \tag{3.2b}
\end{align*}
$$

Theorem 3.3 (For all classes in 5 -g-UFT). The change of the tensor $B_{\omega \mu \nu}$ induced by the conformal change (3.1) may be given by

$$
\begin{align*}
\bar{B}_{\omega \mu \nu}= & e^{\Omega}\left(B_{\omega \mu \nu}+k_{\nu[\omega} \Omega_{\mu]}-k_{\omega \mu} \Omega_{\nu}\right. \tag{3.3}\\
& \left.-h_{\nu[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta}+2^{(2)} k_{\nu[\omega} k_{\mu]}{ }^{\delta} \Omega_{\delta}+k_{\omega \mu}{ }^{(2)} k_{\nu}{ }^{\delta} \Omega_{\delta}\right) .
\end{align*}
$$

Now, we are ready to derive representations of the changes $S_{\omega} \rightarrow \bar{S}_{\omega}$ in $5-g$-UFT for the second class induced by the conformal change (3.1).

Theorem 3.4. The conformal change (3.1) induces the following change :

$$
\begin{align*}
& 2 \stackrel{(10) 1}{B}_{\omega \mu \nu}^{(\overline{(1)}}=e^{\Omega}\left[\quad \stackrel{(10) 1}{B}_{\omega \mu \nu}+\left(-2^{(4)} k_{\nu[\omega} k_{\mu]}{ }^{\delta}\right.\right. \tag{3.4}\\
& \left.\left.+2^{(2)} k_{\nu[\omega} k_{\mu]}{ }^{\delta}-k_{\nu[\omega}{ }^{(2)} k_{\mu]}{ }^{\delta}\right) \Omega_{\delta}-{ }^{(3)} k_{\nu[\omega} \Omega_{\mu]}\right] \text {. }
\end{align*}
$$

THEOREM 3.5. The conformal change (3.1) induces the following change:

$$
\begin{align*}
\stackrel{\rightharpoonup}{p p q}_{B_{\omega \mu \nu}}= & e^{\Omega}\left[{ }^{p p q} B_{\omega \mu \nu}+(-1)^{p}\left\{2^{(p+q+2)} k_{\nu[\omega}{ }^{(p+1)} k_{\mu]}{ }^{\delta}\right.\right. \\
& +{ }^{(2 p+1)} k_{\omega \mu}{ }^{(2+q)} k_{\nu}{ }^{\delta}-{ }^{(2 p+1)} k_{\omega \mu}{ }^{(q)} k_{\nu}{ }^{\delta} \tag{3.5}\\
& +{ }^{(p+q+1)} k_{\nu[\omega}{ }^{(p)} k_{\mu]}{ }^{\left.\left(p+{ }^{(p+q)} k_{\nu[\omega}{ }^{(p+1)} k_{\mu]}{ }^{\delta}\right\} \Omega_{\delta}\right] .}
\end{align*}
$$

$$
\binom{p=0,1,2,3,4, \cdots}{q=0,1,2,3,4, \cdots}
$$

THEOREM 3.6. The change $S_{\omega} \rightarrow \bar{S}_{\omega}$ induced by conformal change (3.1) may be represented by

$$
\begin{align*}
\bar{S}_{\omega}= & S_{\omega}+\frac{1}{2 C}\left[\left(-7 K_{2}^{3}+11 K_{2}^{2}-8 K_{2}+1\right) k_{\omega}{ }^{\delta} \Omega_{\delta}\right. \\
& \left.-\left(3-K_{2}+{K_{2}}^{2}\right)^{(2)}{k_{\alpha}}^{\alpha}{k_{\omega}}^{\delta} \Omega_{\delta}\right] \tag{3.6}
\end{align*}
$$

where $C=K_{2}{ }^{2}-1$.
Proof. In virtue of (2.19) and Agreement (3.1), we have

$$
\begin{equation*}
\left(1-\bar{K}_{2}{ }^{2}\right)(\bar{S}-\bar{B})=-2 \stackrel{\overline{(10) 1}}{B}+\left(\bar{K}_{2}-1\right) \stackrel{\overline{110}}{B}+2 \stackrel{\overline{(20) 2}}{B}+2 \stackrel{\overline{112}}{B} \tag{3.7}
\end{equation*}
$$

The relation(3.6) follows by substituting (3.2), (3.3), (3.4), (3.5), (2.17), Definition (2.1), Definition (2.2) into (3.7).

Remark 3.7. The results (3.6) can also be obtained by using Theorem 3.6 of [4] and (2.16).

References

[1] C.H. Cho, Conformal change of the connection in 3- and 5-dimensional * $g^{\lambda \nu}$ unified Field Theory, BIBS, Inha Univ. 13 (1992).
[2] C.H. Cho, Conformal change of the connection for the first class in 5dimensional ${ }^{*} g^{\lambda \nu}$-unified Field Theory, Kangweon-Kyungki Math. Jour. 2 (1994), 19-33.
[3] C.H. Cho, Conformal change of the tensor $S_{\lambda \mu}{ }^{\nu}$ for the second category in 6dimensional g-UFT, Kangweon-Kyungki Math. Jour. 4 (1996), 163-171.
[4] C.H. Cho, Conformal change of the torsion tensor in 5-dimensional g-unified field theory, Kangweon-Kyungki Math. Jour. 6, No. 2 (1998), 213-220.
[5] K.T. Chung, Three- and Five-dimensional considerations of the geometry of Einsteins's *g-unified field theory, International Journal of Theoretical Physics 27(9) (1988).
[6] K.T. Chung, Conformal change in Einstein's ${ }^{*} g^{\lambda \nu}$-unified field theory, Nuove Cimento (X)58B (1968).
[7] K.T. Chung, Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuove Cimento (X) 27 (1963).
[8] V. HLAVATÝ, Geometry of Einstein's unified field theory, P. Noordhoff Ltd (1957).

Department of Mathematics
Inha University
Incheon, 402-751, Korea
E-mail: chcho@math.inha.ac.kr

[^0]: Received November 19, 2002.
 2000 Mathematics Subject Classification: 53A45, 83E99.
 Key words and phrases: Einstein connection, conformal change.

[^1]: ${ }^{1}$ Throughout the present paper, we assumed that $n \geq 2$.
 ${ }^{2}$ Throughout this paper, Greek indices are used for holonomic components of tensors. In X_{n} all indices take the values $1, \cdots, n$ and follow the summation convention.

