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CONVERGENCE TO FRACTIONAL BROWNIAN

MOTION AND LOSS PROBABILITY

Jin-Chun Kim and Hee-Choon Lee

Abstract. We study the weak convergence to Fractional Brownian
motion and some examples with applications to traffic modeling.
Finally, we get loss probability for queue-length distribution related
to self-similar process.

1. Introduction

Traditional traffic models based on the Poisson process or, more gen-
erally, on short range dependent processes, cannot describe the behavior
of actual LAN traffic. Because of tremendous burstiness of LAN traffic
at any time scale, many researchers have studied long range dependent
process and self-similar process.

Kelly ([4]) has considered the notion of effective bandwidth in the con-
text of stochastic models for the statistical sharing of resources to figure
out the loss probability. Chang and Zajic ([2]) apply the result on the
effective bandwidth of stationary departure process to intree networks
with time varying capacities and priority tandem queues. Recently, sev-
eral researchers ([1],[4],[6],[10]) have proposed and developed the theory
of effective bandwidth and loss probability as a tentative solution for
various problems that arise in high speed digital networks, in particular
ATM networks.

On the other hand, there has been a recent flood of literature and dis-
cussion on the tail behavior of queue-length distribution, motivated by
potential applications to the design and control by high-speed telecom-
munication networks([3],[5]).
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In section 2, we define the effective bandwidth with a stationary source
and introduce the effective bandwidth of Brownian motion and Frac-
tional Brownian motion. In section 3, we study the weak convergence to
Fractional Brownian motion and give some examples with applications
to traffic modeling. In section 4, we obtain the loss probability, i.e. tail
behavior of queue-length distribution, of self-similar process.

2. Definition and Preliminary

In this section we first define the effective bandwidth with a stationary
source Xi which is the number of arrivals in the ith time unit.

Definition 2.1. The effective bandwidth of X(τ) =
∑τ

i=1 Xi is de-
fined as

ebX(θ, τ) =
1

θτ
log E[eθ

Pτ
i=1 Xi ], 0 < θ < ∞.

If Xi are independent, then

ebX(θ, τ) =
∑

i

ebXi
(θ, τ).

Furthermore, for any fixed value of τ , ebX(θ, τ) is increasing in θ and

EX[0, τ ]

τ
≤ ebX(θ, τ) ≤ X̄[0, τ ]

τ
,

where X̄[0, τ ] is the essential supremum.

Definition 2.2. A stochastic process {X(t)} is said to be a Brownian
motion if

1. X(t) has stationary and independent increments
2. for t > 0, X(t) ∼ N(µ, σ2t)
3. X(0) = 0 a.s.

The effective bandwidth of a Browian motion is

eb(θ, τ) = µ +
θσ2

2
,

where µ is the mean arrival rate and σ2 is the variance of the arrival. A
critical point of a Brownian Motion stream

inf
τ≥0

sup
θ≥0
{θ(B + Cτ)− θτ(µ +

θσ2

2
)}
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τ ∗ =
B

C − µ
, θ∗ =

2(C − µ)

σ2
.

Let ρX(k) be the covariance of stationary stochastic process X(t).
Then we define the followings.

Definition 2.3. A stationary stochastic process exhibits short range
dependence if

∞∑

k=−∞
|ρX(k)| < ∞

Definition 2.4. A stationary stochastic process exhibits long range
dependence if

∞∑

k=−∞
|ρX(k)| = ∞

Definition 2.5. A stochastic process {BH(t)} is said to be a Frac-
tional Brownian motion(FBM) with Hurst parameter H if

1. BH(t) has stationary increments
2. for t > 0, BH(t) is normally distributed with mean 0
3. BH(0) = 0 a.s.
4. The increments of BH(t), Z(j) = BH(j + 1)−BH(j) satisfy

ρZ(k) =
1

2
{|k + 1|2H + |k − 1|2H − 2k2H}

A standard example of a long range dependent process is fractional
Brownian motion, Hurst parameter H > 1/2. If H < 1/2, then this
fractional Brownian motion exhibits short range dependence. On the
other hand, the effective bandwidth of a FBM is

eb(θ, τ) = µ +
θσ2

2
τ 2H−1,

and the critical points are

τ ∗ =
B

C − µ

H

1−H
, θ∗ =

B + (C − µ)τ ∗

σ2(τ ∗)2H
.

Definition 2.6. A continuous process X(t) is self-similar with self-
similarity parameter H ≥ 0 if it satisfies the condition:

X(t)
d
= c−HX(ct), ∀ t ≥ 0,∀c > 0,

where the equality is in the sense of finite-dimensional distributions.
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Brownian motion and Fractional Brownian motion are two important
examples of self-similar process.

3. Convergence to Fractional Brownian motion

Let Y i(j) be the number of arrivals in the jth time unit of ith source.
Let

YM(j) =
M∑
i=1

(Y i(j)− E(Y i(j)),

and τ(k) denote the covariance of Y1(j).

Lemma 3.1. [8] The stationary sequence

1

M1/2
YM(j)

converges in the sense of finite dimensional distributions to GH(j), where
GH(j) represents a stationary Gaussian process with covariance function
of the same form as τ(k), as M →∞.

Theorem 3.1.

lim
T→∞

lim
M→∞

1

THM1/2

[Tt]∑
j=0

YM(j)

converges in the sense of finite dimensional distributions to {σ0BH(t)|0 ≤
t ≤ 1}.

Furthermore, as M →∞ and T →∞,
(a) (Long Range dependence) If

ρ(k) ∼ ck2H−2, c > 0 and 1/2 < H < 1,

then σ2
0 =

c

H(2H − 1)
.

(b) If
∞∑

k=1

|ρ(k)| < ∞ and
∞∑

k=1

ρ(k) = c > 0,

then σ2
0 = c.

(c) (Short Range dependence)

ρ(k) ∼ ck2H−2, c < 0 and 0 < H < 1/2,
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then σ2
0 = − c

H(2H − 1)
.

Proof. Set Zj = 1/M1/2YM(j). By Lemma 3.1, Zj converges in the
sense of finite dimensional distributions to GH(j) as M goes to infin-
ity. By Theorem 7.2.11 of [9], the finite dimensional distributions of

N−H
∑[Nt]

j=1 GH(j) converges to those of {σ0BH(t), 0 ≤ t ≤ 1}.
Theorem 3.2. Let Xt be the autoregressive process of order one, i.e.

Xt = φ1Xt−1 + at, where at ∼ N(0, 1) for each t. Then

lim
T→∞

lim
M→∞

[Tt]∑
j=0

YM(j) =
φ1

1− φ1

B(t).

Proof.

(1− φ1B)Xt = at,

i.e.

Xt =
∞∑

j=0

φj
1at−j.

CovXt(k) = φk
1, k ≥ 1, |φ1| < 1.

Therefore,

ρ(k) = φk
1,

for large M . Since

∑
ρ(k) =

∑
φk

1 =
φ1

1− φ1

< ∞.

Then, from theorem 3.1, we get

lim
T→∞

lim
M→∞

[Tt]∑
j=0

YM(j) =
φ1

1− φ1

B1/2(t) =
φ1

1− φ1

B(t).

Example 3.1 (FARIMA(p,d,q)). Let Y i(j) = bi(−d)aj−i. Then

ρ(k) ∼ ck2d−1 as k →∞

where H = d + 1/2,−1/2 < d < 1/2 and c =
Γ(1− 2d) sin(πd)

π
.
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By Theorem 3.1,

lim
T→∞

lim
M→∞

1

THM1/2

[Tt]∑
j=0

M∑
i=1

(Y i(j)) =

√
c

H(2H − 1)
BH(t).

Example 3.2 (Binary sequence). Let Y i(j) denote the increment
process for the ith stationary binary sequence W i(t) that it generates,
where W i(t) = 1 means that there is a packet at time t and W i(t) = 0
means that there is no packet.
We get

ρ(k) ∼ ck2H−2,

as k →∞ and E[Y i(j)] = µ1

µ1+µ2
if E[Onperiod] = µ1 and E[Offperiod] =

µ2. By Theorem 3.1,

lim
T→∞

lim
M→∞

1

THM1/2





[Tt]∑
j=0

M∑
i=1

(Y i(j))−
M∑
i=1

µ1

µ1 + µ2

t





=

√
c

H(2H − 1)
BH(t).

4. Loss Probability of Stochastic Process

Let Aτ be the amount of work that arrives to be processed in [0, τ ]
and Sτ be the amount of work that can be processed in the same time
interval. Then the workload process is

Qτ = Aτ − Sτ .

and queue-length is defined

Q = supτQτ .

Theorem 4.1. [2]

lim
b→∞

logP (Q > b) = −δ,

where
δ = sup{θ : λ(θ) ≤ 0}

and

λ(θ) = lim
τ→∞

1

τ
log EeθQτ .
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Note that for long range dependent data,

logP (Q > b) ∼ −δbγ,

where γ = 2(1−H).

Theorem 4.2 ([7], Prop. 9).

lim sup
N→∞

1

N
log P (Q > Nb) ≤ −{θ∗(b + cτ ∗)− θ∗τ ∗eb(θ∗, τ ∗)}.

From now on, we study the property and loss probability of self-
similar process. Self-similar processes are of interest in probability theory
because they are connected with limit theorems. Namely, every limit
process with scaling is self-similar as the following lemma states.

Theorem 4.3 ([9]). Suppose X(t) is continuous in probability of
t = 0 and the distribution of X(t) is nondegenerate for each t > 0.
If there exist a stochastic process Y (t) and real {K(T ); T ≥ 0} with
K(T ) > 0, limT→∞ K(T ) = ∞ such that as T →∞,

1

K(T )
Y (Tt) ⇒ X(t),

where⇒ means the convergence of finite-dimensional distributions, then
for some H > 0, X(t) is self-similar process.

Furthermore, K(T ) is of the form K(T ) = THL(T ), where L(T ) is a
slowly varying function.

Let Aτ = µτ + XH(τ), where XH(τ) is a self-similar process.

Theorem 4.4. For any a > 0,

Aaτ = ca,H,µ(τ) + aHAτ ,

where ca,H,µ = µτ(a− aH).

Proof.

Aaτ = µaτ + XH(aτ)

= µτ(a− aH) + aH(µτ + XH(τ))

= µτ(a− aH) + aHAτ .
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Let c be a service rate and Qτ be a waiting length at τ . Then

Qτ = Aτ − cτ

and queueing length
Q = sup

τ
Qτ

is defined.

Theorem 4.5. For any b > 0,

P (Q > b) > sup
τ

P

(
XH(1) >

b− (µ− c)τ

τH

)
.

Proof.

P (sup
τ

((A(τ)− cτ) > b) = P (sup
τ

(XH(τ) + µτ − cτ > b)

> sup
τ

P (XH(τ) + (µ− c)τ > b)

= sup
τ

P (XH(τ) > b− (µ− c)τ)

= sup
τ

P

(
XH(1) >

b− (µ− c)τ

τH

)
.

If XH(1) ∼ Sα(σ, β, µ) with 0 < α < 2, then left hand side of Theorem
4.5 equals

Cα
1 + β

2
σα

(
b− (µ− c)τ

τH

)α

,

where

Cα =

(∫ ∞

0

x−α sin xdx

)−1

.
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