Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 117-125

THE ZEROS OF SOLUTIONS OF SOME DIFFERENTIAL INEQUALITIES

RakJoong Kim

ABSTRACT. Let x(t) satisfy

$$(p(t)x'(t))' + q(t)x^{\alpha}(t) + r(t)x^{\beta-1}x'(t) \le 0 \ (\ge 0).$$

Then the zeros of x(t) or x'(t) are simple.

1. Introduction

This paper is concerned with zeros of solutions to the inequality of the following type: For $\alpha \ge 1$, $\beta \ge 1$,

(1.1)
$$x(t)\left\{ \left(p(t)x'(t) \right)' + q(t)x^{\alpha}(t) + r(t)x^{\beta-1}(t)x'(t) \right\} \le 0.$$

By methods of variation of constants Kwong[1] proved that $y'(a) \neq 0$ or $y'(b) \neq 0$ if y(t) is positive(negative) in (a, b) and if y(t) satisfies the inequality

$$y''(t) + f(t)y'(t) + g(t)y(t) \le (\ge)0.$$

with y(a) = 0 or y(b) = 0 where f and g are continuous functions. Using LaSalle's inequality Wong[2] proved the same results for inequality of the type:

$$(p(t)x'(t))' + g(t)F(x(t)) \le (\ge)0.$$

We consider a simple case: Let $\phi(t)$ be positive, nondecreasing and $\int_0^r 1/\phi(s) \, ds = \infty$ for any fixed r > 0 and let p(t) be positive for $t \ge a$

Received June 12, 2003.

²⁰⁰⁰ Mathematics Subject Classification: Primary 34C10.

Key words and phrases: local maximum, inequality, solution, simple, zeros.

This research was supported by Hallym University Research Fund, HRF-2000-30

and |q(t)/p(t)| integrable on the any compact interval. Suppose that x(t) satisfies the inequality

$$p(t)x'(t) \pm q(t)\phi(x(t)) \le 0, \qquad t \in (a,b)$$

Let x(t) > 0 in (a, t]. Then $x(a) \neq 0$. Otherwise, then

$$\int_0^{x(t)} \frac{ds}{\phi(s)} \le \int_a^t \left| \frac{q(s)}{p(s)} \right| ds.$$

Thus $x(t) \equiv 0$ in [a, t]. Let x(t) satisfy the nonlinear differential equation $p(t)x'(t) \pm q(t)\phi(x(t)) = 0$. If $\phi(0) = 0$, $p(a) \neq 0$ and x(a) = 0, then x(t) is flat at t = a. i.e., $x^{(n)}(a) = 0$ for all $n \in \mathbb{N}$.

2. main Results

In order to prove our main results, we need the following integral inequality called LaSalle's inequality.

LASALLE'S INEQUALITY. For some c > 0 let

(C1)
$$F \in C([0, c]; [0, \infty))$$
 be positive and nondecreasing on $(0, c)$,

(C2)
$$h \in L_1(\mathbb{R}; [0, \infty)),$$

(C3)
$$x \in C([a, b]; [0, c)).$$

Then for $t \in [a, b]$ the inequalities

(2.1)
$$x(t) \le \int_a^t h(s)F(x(s)) \ ds,$$

(2.2)
$$x(t) \le \int_t^b h(s)F(x(s)) \ ds$$

imply that

(2.3)
$$\int_{0}^{x(t)} \frac{ds}{F(s)} \leq \int_{a}^{t} h(s) ds,$$

(2.4)
$$\int_0^{x(t)} \frac{ds}{F(s)} \le \int_t^b h(s) \ ds$$

respectively. In addition,

(C4) if
$$\int_0^{\epsilon} \frac{ds}{F(s)}$$
 is divergent for $\epsilon > 0$ then $x(t) \equiv 0$ on $[a, b]$

Throughout this paper we suppose that 1/p(t) is positive for $t \in (a, b]$ and integrable in [a, b].

THEOREM 1. Assume that

$$(2.5) |q(t)| \le h(t),$$

(2.6)
$$\frac{|r(t)|}{p(t)} \le h(t), |r'(t)| \le h(t) \text{ in } (a, b)$$

(2.7)
$$h(t) \in L_1([a,b];(0,\infty)).$$

Let x(t) satisfy (1.1). Assume that x(t) be either positive or negative in (a, b). Then

(2.8)
$$x^2(a) + (x')^2(a) \neq 0,$$

or

(2.9)
$$x^2(b) + (x')^2(b) \neq 0.$$

Proof. We prove (2.8). Suppose that $x^2(a) + (x')^2(a) = 0$. Case (1): Assume that x(t) > 0 in (a, b). It follows that

$$p(t)x'(t) \le -\int_a^t \{q(s)x^{\alpha}(s) + r(s)x^{\beta-1}(s)x'(s)\} ds$$

which implies

$$p(t)x'(t) \le \frac{1}{\beta} \left[-r(t)x^{\beta}(t) - \int_a^t \left\{ \beta q(s)x^{\alpha}(s) - r'(s)x^{\beta}(s) \right\} ds \right].$$

RakJoong Kim

Thus we have

$$\begin{split} & x(t) \\ & \leq \frac{1}{\beta} \left[\int_a^t -\frac{r(s)}{p(s)} x^\beta(s) ds - \int_a^t \frac{1}{p(s)} \int_a^s \left\{ \beta q(\tau) x^\alpha(\tau) - r'(\tau) x^\beta(\tau) \right\} d\tau ds \right] \\ & \leq \frac{1}{\beta} \left[\int_a^t \frac{|r(s)|}{p(s)} x^\beta(s) ds + K \int_a^t \left\{ \beta |q(s)| x^\alpha(s) + |r'(s)| x^\beta(s) \right\} ds \right] \\ & = \int_a^t \left[K |q(s)| x^\alpha(s) + \frac{1}{\beta} \left\{ \frac{|r(s)|}{p(s)} + K |r'(s)| \right\} x^\beta(s) \right] ds \\ & \leq \int_a^t (2K+1)h(s) \{ x^\alpha(s) + x^\beta(s) \} ds, \end{split}$$

where $K = \int_a^b ds/p(s) \, ds$. Since $F(s) = s^{\alpha} + s^{\beta}$ is increasing in s > 0 by means of (2.1), (2.3) we obtain

$$\int_0^{x(t)} \frac{ds}{s^\alpha + s^\beta} \le (2K+1) \int_a^t h(s) \ ds.$$

Consequently we obtain $x(t) \equiv 0$ in [a, t]. This contradicts the hypothesis x(t) > 0 in (a, b).

Case(2): Assume that x(t) < 0 in (a, b). It follows that

$$p(t)x'(t) \ge -\int_{a}^{t} \{q(s)x^{\alpha}(s) + r(s)x^{\beta-1}(s)x'(s)\} ds$$

which implies

$$p(t)x'(t) \ge \frac{1}{\beta} \left[-r(t)x^{\beta}(t) - \int_a^t \left\{ \beta q(s)x^{\alpha}(s) - r'(s)x^{\beta}(s) \right\} ds \right].$$

Thus we have

$$\begin{aligned} x(t) &\geq \frac{1}{\beta} \int_a^t -\frac{r(s)}{p(s)} x^{\beta}(s) \ ds \\ &\quad -\int_a^t \frac{1}{p(s)} \int_a^s \left\{ q(\tau) x^{\alpha}(\tau) - \frac{1}{\beta} r'(\tau) x^{\beta}(\tau) \right\} d\tau ds. \end{aligned}$$

which is reduced to

$$\begin{aligned} |x(t)| &\leq \frac{1}{\beta} \int_{a}^{t} \frac{|r(s)|}{p(s)} |x(s)|^{\beta} ds \\ &+ \int_{a}^{t} \frac{1}{p(s)} \int_{a}^{s} \left\{ |q(\tau)| |x(\tau)|^{\alpha} + \frac{1}{\beta} |r'(\tau)| |x(\tau)|^{\beta} \right\} d\tau ds. \end{aligned}$$

Therefore we have

$$\begin{aligned} |x(t)| &\leq \int_{a}^{t} \left[K|q(s)||x(s)|^{\alpha} + \frac{1}{\beta} \left\{ \frac{|r(s)|}{p(s)} + K|r'(s)| \right\} |x(s)|^{\beta} \right] ds \\ &\leq \int_{a}^{t} (2K+1)h(s)\{|x(s)|^{\alpha} + |x(s)|^{\beta}\} ds, \end{aligned}$$

where $K = \int_{a}^{b} ds/p(s) ds$. By means of (2.1), (2.3) we obtain

$$\int_{0}^{|x(t)|} \frac{ds}{s^{\alpha} + s^{\beta}} \le (2K+1) \int_{a}^{t} h(s) \, ds.$$

Consequently we obtain $x(t) \equiv 0$ in [a, t]. This contradicts the hypothesis x(t) < 0 in (a, b).

Next we prove (2.9). Let x(t) > 0 in (a,b). In the case x(t) < 0 in (a,b) we can apply the similar method. It follows that

$$-p(t)x'(t) \le \frac{1}{\beta} \left[r(t)x^{\beta}(t) - \int_{t}^{b} \left\{ \beta q(s)x^{\alpha}(s) - r'(s)x^{\beta}(s) \right\} ds \right],$$

Thus we obtain

$$\begin{aligned} x(t) &\leq \frac{1}{\beta} \left[\int_t^b \frac{|r(s)|}{p(s)} x^\beta(s) ds + K \int_t^b \left\{ \beta |q(s)| x^\alpha(s) + |r'(s)| x^\beta(s) \right\} ds \right] \\ &= \int_t^b \left[K |q(s)| x^\alpha(s) + \frac{1}{\beta} \left\{ \frac{|r(s)|}{p(s)} + K |r'(s)| \right\} x^\beta(s) \right] ds \\ &\leq \int_t^b (2K+1)h(s) \{ x^\alpha(s) + x^\beta(s) \} ds, \end{aligned}$$

where $K = \int_a^b ds/p(s) ds$ provided that x(t) > 0. Thus by means of (2.2), (2.4) we reach the same conclusion as case (1).

RakJoong Kim

COROLLARY 2. Assume that x(t) satisfies

(2.10)
$$x(t)\left\{ (p(t)x'(t))' + q(t)x^{\alpha}(t) + r(t)x^{\beta}(t) \right\} \le 0$$

where $\alpha \geq 1$, $\beta \geq 1$ with the conditions

(2.11)
$$|q(t)| \le h(t), |r(t)| \le h(t) \text{ in } (a,b)$$

(2.12) $h(t) \in L_1([a,b];(0,\infty)).$

Let x(t) be either positive or negative in (a, b). Then $x^2(a) + (x')^2(a) \neq 0$ or $x^2(b) + (x')^2(b) \neq 0$.

We consider the following singular differential inequality .

EXAMPLE 3. For $\sigma > -1$ let x(t) satisfy

$$(t^{\sigma}x'(t))' + q(t)x^{\alpha}(t) + x^{5}(t) \le 0, \qquad \alpha \ge 1.$$

with condition $|q(t)| \in L_1([0, 1]; (0, \infty))$. Let x(t) be positive in (0, 1). If x(0) = 0 or x(1) = 0 Then $x'(0) \neq 0$ or $x'(1) \neq 0$.

THEOREM 4. Under the assumptions of Theorem 1 let x(t) satisfy (1.1). Unless x(t) is constant x(t) has only finitely many zeros in every compact interval [a, b].

Proof. Assume that $E = \{t \in [a,b] | x(t) = 0\}$ is an infinite set. Then E contains a sequence $\{t_n\}_{n \in \mathbb{N}}$ convergent in E, say t_0 . Then $x'(t_0) = 0$. This contradicts Theorem 1 because $x(t_0) = x'(t_0) = 0$. \Box

THEOREM 5. Under the assumptions of Theorem 1 with $q(t) \neq 0$ if x(t) is a nontrivial solution of

$$(p(t)x'(t))' + q(t)x^{\alpha}(t) + r(t)x^{\beta-1}(t)x'(t) = 0,$$

then x'(t) has only a finite number of zeros in every compact interval [a, b].

Proof. Assume that $F = \{t \in [a, b] \mid x'(t) = 0\}$ is an infinite set. Then F contains a sequence $\{t_n\}_{n \in \mathbb{N}}$ convergent to some element in F. Call it t_0 . Then $x''(t_0) = 0$. So $x(t_0) = 0$. This contradicts Theorem 1

THEOREM 6. Under the assumption in Theorem 1 with q(t) > 0and r(t) > 0 let x(t) be a nontrivial C^1 -solution of

$$x(t)\left\{ (p(t)x'(t))' + q(t)x^{\alpha}(t) + r(t)x^{\beta-1}(t)x'(t) \right\} \le 0$$

where $\alpha(\geq 1)$ is an odd integer and $\beta(\geq 2)$ is an even integer. Then x(t) has no nonnegative local minimum or nonpositive local maximum.

Proof. From Theorem 1 it follows that 0 is neither a local maximum nor a local minimum. Let x(s) be a positive local minimum. Then x'(s) = 0. We put y(t) = x(t) - x(s). Then we find y(s) = y'(s) =0, y'(t) = x'(t). There exists $\delta > 0$ such that y(t) > 0, $y'(t) \ge 0$ for $t \in (s, s + \delta)$. So x(t) > y(t) for $t \in (s, s + \delta)$. Since for $t \in (s, s + \delta)$

$$(p(t)y'(t))' + q(t)y^{\alpha}(t) + r(t)y^{\beta-1}(t)y'(t)$$

= $(p(t)x'(t))' + q(t)y^{\alpha}(t) + r(t)y^{\beta-1}(t)x'(t)$
 $\leq (p(t)x'(t))' + q(t)x^{\alpha}(t) + r(t)x^{\beta-1}(t)x'(t),$

we obtain

$$y(t)\left\{ (p(t)y'(t))' + q(t)y^{\alpha}(t) + r(t)y^{\beta-1}(t)y'(t) \right\} \le 0.$$

But this contradicts Theorem 1. In the case x(t) < 0 in (a,b) we can apply the similar method.

Now we introduce a function $\phi(t) \in C([a, \infty); [a, \infty))$ which is nondecreasing with $\phi(t) \leq t$ on $[a, \infty)$.

THEOREM 7. Assume that

(C5)
$$1/p(t) \in L_1([a,b];(0,\infty)), \ q(t) \in L_1([a,b];\mathbb{R}),$$

(C6) $G \in L_1(\mathbb{R}, \mathbb{R})$ and there exists a function F satisfying

(C1), (C4) and
$$|G(x)| \leq F(|x|)$$
 in $x \in (-\epsilon, \epsilon)$ for some $\epsilon > 0$.

Suppose that

(2.13)
$$x(t)\left\{ (p(t)x'(t))' \pm q(t)G(x(\phi(t))) \right\} \le 0.$$

Let x(t) satisfy (2.13). Assume that x(t) is either positive or negative in (a, b). Then $x^2(a) + (x')^2(a) \neq 0$ or $x^2(b) + (x')^2(b) \neq 0$.

RakJoong Kim

Proof. We prove only the case x(t) < 0 in (a, b). Direct calculation leads to

$$|x(t)| \le K \int_{a}^{t} |q(s)| F(|x(\phi(s))|) ds.$$

where $K = \int_a^t ds/p(s) \, ds$. Put $X(t) = K \int_a^t |q(s)| \ F(|x(\phi(s))|)$. Then We have

$$X'(t) = K|q(t)| F(|x(\phi(t))|)$$

$$\leq K|q(t)| F(X(\phi(t)))$$

$$\leq K|q(t)| F(X(t)).$$

We note that X(t) is increasing. Thus we obtain

$$\int_0^{|x(t)|} \frac{du}{F(u)} \le K \int_a^t |q(s)| \ ds.$$

By (C4) $x(t) \equiv 0$ in [a, t]. This contradicts the hypothesis x(t) is negative in (a, b).

THEOREM 8. With the assumptions (C6) and

$$1/p(t) \in L_1([a,b];(0,\infty)), \quad q \circ \phi \in L_1([a,b];\mathbb{R})$$

we suppose that

(2.14)
$$x(t)\left\{ (p(t)x'(t))' \pm q(\phi(t))G(x(\phi(t)))\phi'(t) \right\} \le 0.$$

Let x(t) satisfy (2.13). Assume that x(t) is either positive or negative in (a,b). Then $x^2(a) + (x')^2(a) \neq 0$ or $x^2(b) + (x')^2(b) \neq 0$.

Proof. It follows that $\phi'(t) \ge 0$ because $\phi(t)$ is nondecreasing. Suppose that $x^2(a) + (x')^2(a) = 0$. If x(t) < 0 in (a,b) by the same process as in above we obtain

$$\int_{0}^{|x(t)|} \frac{du}{F(u)} \le K \int_{\phi(a)}^{\phi(t)} |q(s)| \ ds.$$

By (C4) $x(t) \equiv 0$ in [a, t]. This contradicts the hypothesis that x(t) is negative in (a, b).

EXAMPLE 9. For $\alpha \ge 1$, $t \ge 1$ let x(t) satisfy

$$(p(t)x'(t))' + q(t)x^{\alpha}(\sqrt{t}) \le 0.$$

with condition $|q(t)| \in L_1([a, b]; (0, \infty)), 1 < a < b$. Let x(t) be positive in (a, b). If x(a) = 0 or x(b) = 0 then $x'(a) \neq 0$ or $x'(b) \neq 0$.

References

- 1. M.K.Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \Re^n , Arch. Rational Mech. Anal. **105** (1989), 243-266.
- Fu-Hsiang Wong, Zeros of solutions of a second order nonlinear differential inequality, Proc. Amer. Math. soc. 111. No 2 (1991), 497-500.

Department of Mathematics Hallym University Chuncheon, Kangwon 200-702, Korea. *E-mail*: rjkim@hallym.ac.kr