# THE ZEROS OF SOLUTIONS OF SOME DIFFERENTIAL INEQUALITIES 

RakJoong Kim

Abstract. Let $x(t)$ satisty

$$
\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta-1} x^{\prime}(t) \leq 0(\geq 0) .
$$

Then the zeros of $x(t)$ or $x^{\prime}(t)$ are simple.

## 1. Introduction

This paper is concerned with zeros of solutions to the inequality of the following type: For $\alpha \geq 1, \beta \geq 1$,

$$
\begin{equation*}
x(t)\left\{\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta-1}(t) x^{\prime}(t)\right\} \leq 0 . \tag{1.1}
\end{equation*}
$$

By methods of variation of constants Kwong[1] proved that $y^{\prime}(a) \neq 0$ or $y^{\prime}(b) \neq 0$ if $y(t)$ is positive(negative) in $(a, b)$ and if $y(t)$ satisfies the inequality

$$
y^{\prime \prime}(t)+f(t) y^{\prime}(t)+g(t) y(t) \leq(\geq) 0
$$

with $y(a)=0$ or $y(b)=0$ where $f$ and $g$ are continuous functions. Using LaSalle's inequality Wong[2] proved the same results for inequality of the type:

$$
\left(p(t) x^{\prime}(t)\right)^{\prime}+g(t) F(x(t)) \leq(\geq) 0 .
$$

We consider a simple case: Let $\phi(t)$ be positive, nondecreasing and $\int_{0}^{r} 1 / \phi(s) d s=\infty$ for any fixed $r>0$ and let $p(t)$ be positive for $t \geq a$
and $|q(t) / p(t)|$ integrable on the any compact interval. Suppose that $x(t)$ satisfies the inequality

$$
p(t) x^{\prime}(t) \pm q(t) \phi(x(t)) \leq 0, \quad t \in(a, b)
$$

Let $x(t)>0$ in $(a, t]$. Then $x(a) \neq 0$. Otherwise, then

$$
\int_{0}^{x(t)} \frac{d s}{\phi(s)} \leq \int_{a}^{t}\left|\frac{q(s)}{p(s)}\right| d s
$$

Thus $x(t) \equiv 0$ in $[a, t]$. Let $x(t)$ satisfy the nonlinear differential equation $p(t) x^{\prime}(t) \pm q(t) \phi(x(t))=0$. If $\phi(0)=0, p(a) \neq 0$ and $x(a)=0$, then $x(t)$ is flat at $t=a$. i.e., $x^{(n)}(a)=0$ for all $n \in \mathbb{N}$.

## 2. main Results

In order to prove our main results, we need the following integral inequality called LaSalle's inequality.

LaSalle's Inequality. For some $c>0$ let
(C1) $F \in C([0, c] ;[0, \infty))$ be positive and nondecreasing on $(0, c)$,

$$
\begin{align*}
& h \in L_{1}(\mathbb{R} ;[0, \infty)),  \tag{C2}\\
& x \in C([a, b] ;[0, c)) . \tag{C3}
\end{align*}
$$

Then for $t \in[a, b]$ the inequalities

$$
\begin{align*}
& x(t) \leq \int_{a}^{t} h(s) F(x(s)) d s  \tag{2.1}\\
& x(t) \leq \int_{t}^{b} h(s) F(x(s)) d s \tag{2.2}
\end{align*}
$$

imply that

$$
\begin{align*}
\int_{0}^{x(t)} \frac{d s}{F(s)} & \leq \int_{a}^{t} h(s) d s  \tag{2.3}\\
\int_{0}^{x(t)} \frac{d s}{F(s)} & \leq \int_{t}^{b} h(s) d s \tag{2.4}
\end{align*}
$$

respectively. In addition,
(C4) if $\int_{0}^{\epsilon} \frac{d s}{F(s)}$ is divergent for $\epsilon>0$ then $x(t) \equiv 0$ on $[a, b]$

Throughout this paper we suppose that $1 / p(t)$ is positive for $t \in$ $(a, b]$ and integrable in $[a, b]$.

Theorem 1. Assume that

$$
\begin{align*}
& |q(t)| \leq h(t),  \tag{2.5}\\
& \frac{|r(t)|}{p(t)} \leq h(t),\left|r^{\prime}(t)\right| \leq h(t) \text { in }(a, b)  \tag{2.6}\\
& h(t) \in L_{1}([a, b] ;(0, \infty)) . \tag{2.7}
\end{align*}
$$

Let $x(t)$ satisfy (1.1). Assume that $x(t)$ be either positive or negative in $(a, b)$. Then

$$
\begin{equation*}
x^{2}(a)+\left(x^{\prime}\right)^{2}(a) \neq 0 \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{2}(b)+\left(x^{\prime}\right)^{2}(b) \neq 0 \tag{2.9}
\end{equation*}
$$

Proof. We prove (2.8). Suppose that $x^{2}(a)+\left(x^{\prime}\right)^{2}(a)=0$.
Case (1): Assume that $x(t)>0$ in $(a, b)$. It follows that

$$
p(t) x^{\prime}(t) \leq-\int_{a}^{t}\left\{q(s) x^{\alpha}(s)+r(s) x^{\beta-1}(s) x^{\prime}(s)\right\} d s
$$

which implies

$$
p(t) x^{\prime}(t) \leq \frac{1}{\beta}\left[-r(t) x^{\beta}(t)-\int_{a}^{t}\left\{\beta q(s) x^{\alpha}(s)-r^{\prime}(s) x^{\beta}(s)\right\} d s\right] .
$$

Thus we have

$$
\begin{aligned}
& x(t) \\
& \leq \frac{1}{\beta}\left[\int_{a}^{t}-\frac{r(s)}{p(s)} x^{\beta}(s) d s-\int_{a}^{t} \frac{1}{p(s)} \int_{a}^{s}\left\{\beta q(\tau) x^{\alpha}(\tau)-r^{\prime}(\tau) x^{\beta}(\tau)\right\} d \tau d s\right] \\
& \leq \frac{1}{\beta}\left[\int_{a}^{t} \frac{|r(s)|}{p(s)} x^{\beta}(s) d s+K \int_{a}^{t}\left\{\beta|q(s)| x^{\alpha}(s)+\left|r^{\prime}(s)\right| x^{\beta}(s)\right\} d s\right] \\
& =\int_{a}^{t}\left[K|q(s)| x^{\alpha}(s)+\frac{1}{\beta}\left\{\frac{\mid r(s \mid)}{p(s)}+K\left|r^{\prime}(s)\right|\right\} x^{\beta}(s)\right] d s \\
& \leq \int_{a}^{t}(2 K+1) h(s)\left\{x^{\alpha}(s)+x^{\beta}(s)\right\} d s,
\end{aligned}
$$

where $K=\int_{a}^{b} d s / p(s) d s$. Since $F(s)=s^{\alpha}+s^{\beta}$ is increasing in $s>0$ by means of (2.1), (2.3) we obtain

$$
\int_{0}^{x(t)} \frac{d s}{s^{\alpha}+s^{\beta}} \leq(2 K+1) \int_{a}^{t} h(s) d s
$$

Consequently we obtain $x(t) \equiv 0$ in $[a, t]$. This contradicts the hypothesis $x(t)>0$ in $(a, b)$.
Case(2): Assume that $x(t)<0$ in $(a, b)$. It follows that

$$
p(t) x^{\prime}(t) \geq-\int_{a}^{t}\left\{q(s) x^{\alpha}(s)+r(s) x^{\beta-1}(s) x^{\prime}(s)\right\} d s
$$

which implies

$$
p(t) x^{\prime}(t) \geq \frac{1}{\beta}\left[-r(t) x^{\beta}(t)-\int_{a}^{t}\left\{\beta q(s) x^{\alpha}(s)-r^{\prime}(s) x^{\beta}(s)\right\} d s\right]
$$

Thus we have

$$
\begin{aligned}
& x(t) \geq \frac{1}{\beta} \int_{a}^{t}-\frac{r(s)}{p(s)} x^{\beta}(s) d s \\
& \quad-\int_{a}^{t} \frac{1}{p(s)} \int_{a}^{s}\left\{q(\tau) x^{\alpha}(\tau)-\frac{1}{\beta} r^{\prime}(\tau) x^{\beta}(\tau)\right\} d \tau d s
\end{aligned}
$$

which is reduced to

$$
\begin{aligned}
|x(t)| \leq \frac{1}{\beta} & \int_{a}^{t} \frac{|r(s)|}{p(s)}|x(s)|^{\beta} d s \\
& +\int_{a}^{t} \frac{1}{p(s)} \int_{a}^{s}\left\{\left|q(\tau)\left\|\left.x(\tau)\right|^{\alpha}+\frac{1}{\beta}\left|r^{\prime}(\tau) \| x(\tau)\right|^{\beta}\right\} d \tau d s\right.\right.
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
|x(t)| & \leq \int_{a}^{t}\left[K|q(s)||x(s)|^{\alpha}+\frac{1}{\beta}\left\{\frac{|r(s)|}{p(s)}+K\left|r^{\prime}(s)\right|\right\}|x(s)|^{\beta}\right] d s \\
& \leq \int_{a}^{t}(2 K+1) h(s)\left\{|x(s)|^{\alpha}+|x(s)|^{\beta}\right\} d s,
\end{aligned}
$$

where $K=\int_{a}^{b} d s / p(s) d s$. By means of (2.1), (2.3) we obtain

$$
\int_{0}^{|x(t)|} \frac{d s}{s^{\alpha}+s^{\beta}} \leq(2 K+1) \int_{a}^{t} h(s) d s
$$

Consequently we obtain $x(t) \equiv 0$ in $[a, t]$. This contradicts the hypothesis $x(t)<0$ in $(a, b)$.

Next we prove (2.9). Let $x(t)>0$ in (a,b). In the case $x(t)<0$ in (a,b) we can apply the similar method. It follows that

$$
-p(t) x^{\prime}(t) \leq \frac{1}{\beta}\left[r(t) x^{\beta}(t)-\int_{t}^{b}\left\{\beta q(s) x^{\alpha}(s)-r^{\prime}(s) x^{\beta}(s)\right\} d s\right],
$$

Thus we obtain

$$
\begin{aligned}
x(t) & \leq \frac{1}{\beta}\left[\int_{t}^{b} \frac{|r(s)|}{p(s)} x^{\beta}(s) d s+K \int_{t}^{b}\left\{\beta|q(s)| x^{\alpha}(s)+\left|r^{\prime}(s)\right| x^{\beta}(s)\right\} d s\right] \\
& =\int_{t}^{b}\left[K|q(s)| x^{\alpha}(s)+\frac{1}{\beta}\left\{\frac{\mid r(s \mid)}{p(s)}+K\left|r^{\prime}(s)\right|\right\} x^{\beta}(s)\right] d s \\
& \leq \int_{t}^{b}(2 K+1) h(s)\left\{x^{\alpha}(s)+x^{\beta}(s)\right\} d s,
\end{aligned}
$$

where $K=\int_{a}^{b} d s / p(s) d s$ provided that $x(t)>0$. Thus by means of (2.2), (2.4) we reach the same conclusion as case (1).

Corollary 2. Assume that $x(t)$ satisfies

$$
\begin{equation*}
x(t)\left\{\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta}(t)\right\} \leq 0 \tag{2.10}
\end{equation*}
$$

where $\alpha \geq 1, \beta \geq 1$ with the conditions

$$
\begin{align*}
& |q(t)| \leq h(t),|r(t)| \leq h(t) \quad \text { in }(a, b)  \tag{2.11}\\
& h(t) \in L_{1}([a, b] ;(0, \infty)) . \tag{2.12}
\end{align*}
$$

Let $x(t)$ be either positive or negative in $(a, b)$. Then $x^{2}(a)+\left(x^{\prime}\right)^{2}(a) \neq$ 0 or $x^{2}(b)+\left(x^{\prime}\right)^{2}(b) \neq 0$.

We consider the following singular differential inequality .
Example 3. For $\sigma>-1$ let $x(t)$ satisfy

$$
\left(t^{\sigma} x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+x^{5}(t) \leq 0, \quad \alpha \geq 1
$$

with condition $|q(t)| \in L_{1}([0,1] ;(0, \infty))$. Let $x(t)$ be positive in $(0,1)$. If $x(0)=0$ or $x(1)=0$ Then $x^{\prime}(0) \neq 0$ or $x^{\prime}(1) \neq 0$.

Theorem 4. Under the assumptions of Theorem 1 let $x(t)$ satisfy (1.1). Unless $x(t)$ is constant $x(t)$ has only finitely many zeros in every compact interval $[a, b]$.

Proof. Assume that $E=\{t \in[a, b] \mid x(t)=0\}$ is an infinite set. Then E contains a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ convergent in E , say $t_{0}$. Then $x^{\prime}\left(t_{0}\right)=0$. This contradicts Theorem 1 because $x\left(t_{0}\right)=x^{\prime}\left(t_{0}\right)=0$.

Theorem 5. Under the assumptions of Theorem 1 with $q(t) \neq 0$ if $x(t)$ is a nontrivial solution of

$$
\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta-1}(t) x^{\prime}(t)=0
$$

then $x^{\prime}(t)$ has only a finite number of zeros in every compact interval $[a, b]$.

Proof. Assume that $F=\left\{t \in[a, b] \mid x^{\prime}(t)=0\right\}$ is an infinite set. Then F contains a sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ convergent to some element in F . Call it $t_{0}$. Then $x^{\prime \prime}\left(t_{0}\right)=0$. So $x\left(t_{0}\right)=0$. This contradicts Theorem 1

Theorem 6. Under the assumption in Theorem 1 with $q(t)>0$ and $r(t)>0$ let $x(t)$ be a nontrivial $C^{1}$-solution of

$$
x(t)\left\{\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta-1}(t) x^{\prime}(t)\right\} \leq 0
$$

where $\alpha(\geq 1)$ is an odd integer and $\beta(\geq 2)$ is an even integer. Then $x(t)$ has no nonnegative local minimum or nonpositive local maximum.

Proof. From Theorem 1 it follows that 0 is neither a local maximum nor a local minimum. Let $x(s)$ be a positive local minimum. Then $x^{\prime}(s)=0$. We put $y(t)=x(t)-x(s)$. Then we find $y(s)=y^{\prime}(s)=$ $0, y^{\prime}(t)=x^{\prime}(t)$. There exists $\delta>0$ such that $y(t)>0, y^{\prime}(t) \geq 0$ for $t \in(s, s+\delta)$. So $x(t)>y(t)$ for $t \in(s, s+\delta)$. Since for $t \in(s, s+\delta)$

$$
\begin{aligned}
& \left(p(t) y^{\prime}(t)\right)^{\prime}+q(t) y^{\alpha}(t)+r(t) y^{\beta-1}(t) y^{\prime}(t) \\
= & \left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) y^{\alpha}(t)+r(t) y^{\beta-1}(t) x^{\prime}(t) \\
\leq & \left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(t)+r(t) x^{\beta-1}(t) x^{\prime}(t),
\end{aligned}
$$

we obtain

$$
y(t)\left\{\left(p(t) y^{\prime}(t)\right)^{\prime}+q(t) y^{\alpha}(t)+r(t) y^{\beta-1}(t) y^{\prime}(t)\right\} \leq 0 .
$$

But this contradicts Theorem 1. In the case $x(t)<0$ in (a,b) we can apply the similar method.

Now we introduce a function $\phi(t) \in C([a, \infty) ;[a, \infty))$ which is nondecreasing with $\phi(t) \leq t$ on $[a, \infty)$.

Theorem 7. Assume that

$$
\begin{equation*}
1 / p(t) \in L_{1}([a, b] ;(0, \infty)), q(t) \in L_{1}([a, b] ; \mathbb{R}) \tag{C5}
\end{equation*}
$$

(C6) $\quad G \in L_{1}(\mathbb{R}, \mathbb{R})$ and there exists a function $F$ satisfying
$(C 1),(C 4)$ and $|G(x)| \leq F(|x|)$ in $x \in(-\epsilon, \epsilon)$ for some $\epsilon>0$.
Suppose that

$$
\begin{equation*}
x(t)\left\{\left(p(t) x^{\prime}(t)\right)^{\prime} \pm q(t) G(x(\phi(t)))\right\} \leq 0 . \tag{2.13}
\end{equation*}
$$

Let $x(t)$ satisfy (2.13). Assume that $x(t)$ is either positive or negative in $(a, b)$. Then $x^{2}(a)+\left(x^{\prime}\right)^{2}(a) \neq 0$ or $x^{2}(b)+\left(x^{\prime}\right)^{2}(b) \neq 0$.

Proof. We prove only the case $x(t)<0$ in $(a, b)$. Direct calculation leads to

$$
|x(t)| \leq K \int_{a}^{t}|q(s)| F(|x(\phi(s))|) d s
$$

where $K=\int_{a}^{t} d s / p(s) d s$. Put $X(t)=K \int_{a}^{t}|q(s)| F(|x(\phi(s))|)$. Then We have

$$
\begin{aligned}
X^{\prime}(t) & =K|q(t)| F(|x(\phi(t))|) \\
& \leq K|q(t)| F(X(\phi(t))) \\
& \leq K|q(t)| F(X(t)) .
\end{aligned}
$$

We note that $X(t)$ is increasing. Thus we obtain

$$
\int_{0}^{|x(t)|} \frac{d u}{F(u)} \leq K \int_{a}^{t}|q(s)| d s
$$

By (C4) $x(t) \equiv 0$ in $[a, t]$. This contradicts the hypothesis $x(t)$ is negative in $(a, b)$.

Theorem 8. With the assumptions (C6) and

$$
1 / p(t) \in L_{1}([a, b] ;(0, \infty)), \quad q \circ \phi \in L_{1}([a, b] ; \mathbb{R})
$$

we suppose that

$$
\begin{equation*}
x(t)\left\{\left(p(t) x^{\prime}(t)\right)^{\prime} \pm q(\phi(t)) G(x(\phi(t))) \phi^{\prime}(t)\right\} \leq 0 \tag{2.14}
\end{equation*}
$$

Let $x(t)$ satisfy (2.13). Assume that $x(t)$ is either positive or negative in $(a, b)$. Then $x^{2}(a)+\left(x^{\prime}\right)^{2}(a) \neq 0$ or $x^{2}(b)+\left(x^{\prime}\right)^{2}(b) \neq 0$.

Proof. It follows that $\phi^{\prime}(t) \geq 0$ because $\phi(t)$ is nondecreasing. Suppose that $x^{2}(a)+\left(x^{\prime}\right)^{2}(a)=0$. If $x(t)<0$ in (a,b) by the same process as in above we obtain

$$
\int_{0}^{|x(t)|} \frac{d u}{F(u)} \leq K \int_{\phi(a)}^{\phi(t)}|q(s)| d s
$$

By (C4) $x(t) \equiv 0$ in $[a, t]$. This contradicts the hypothesis that $x(t)$ is negative in $(a, b)$.

Example 9. For $\alpha \geq 1, t \geq 1$ let $x(t)$ satisfy

$$
\left(p(t) x^{\prime}(t)\right)^{\prime}+q(t) x^{\alpha}(\sqrt{t}) \leq 0
$$

with condition $|q(t)| \in L_{1}([a, b] ;(0, \infty)), 1<a<b$. Let $x(t)$ be positive in $(a, b)$. If $x(a)=0$ or $x(b)=0$ then $x^{\prime}(a) \neq 0$ or $x^{\prime}(b) \neq 0$.

## References

1. M.K.Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in $\Re^{n}$, Arch. Rational Mech. Anal. 105 (1989), 243-266.
2. Fu-Hsiang Wong, Zeros of solutions of a second order nonlinear differential inequality, Proc. Amer. Math. soc. 111. No 2 (1991), 497-500.

Department of Mathematics
Hallym University
Chuncheon, Kangwon 200-702, Korea.
E-mail: rjkim@hallym.ac.kr

