WEAK* SMOOTH COMPACTNESS IN SMOOTH TOPOLOGICAL SPACES

CHUN-KEE PARK, WON KEUN MIN AND MYEONG HWAN KIM

ABSTRACT. In this paper we obtain some properties of the weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and introduce the concepts of several types of weak* smooth compactness in smooth topological spaces and investigate some of their properties.

1. Introduction

Badard [1] introduced the concept of a smooth topological space which is a generalization of Chang's fuzzy topological space [2]. Many mathematical structures in smooth topological spaces were introduced and studied. In particular, Gayyar, Kerre and Ramadan [5] and Demirci [3, 4] introduced the concepts of smooth closure and smooth interior of a fuzzy set and several types of compactness in smooth topological spaces and obtained some of their properties. In [6] we introduced the concepts of smooth α -closure and smooth interior of a fuzzy set which are generalizations of smooth closure and smooth interior of a fuzzy set defined in [3] and also introduced several types of α -compactness in smooth topological spaces and obtained some of their properties. In [7] we introduced the concepts of weak smooth α -closure and weak smooth α -interior of a fuzzy set and investigated some of their properties.

In this paper we obtain some properties of the weak smooth α -closure and weak smooth α -interior of a fuzzy set in smooth topological spaces and introduce the concepts of several types of weak* smooth compactness in smooth topological spaces and investigate some of their properties.

Received July 7, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 03E72.

Key words and phrases: fuzzy sets, smooth topology, weak smooth α -closure, weak smooth α -interior, weak* smooth compactness.

2. Preliminaries

Let X be a set and I = [0, 1] be the unit interval of the real line. I^X will denote the set of all fuzzy sets of X. 0_X and 1_X will denote the characteristic functions of ϕ and X, respectively.

A smooth topological space (s.t.s.) [8] is an ordered pair (X, τ) , where X is a non-empty set and $\tau: I^X \to I$ is a mapping satisfying the following conditions:

- (O1) $\tau(0_X) = \tau(1_X) = 1$;
- (O2) $\forall A, B \in I^X, \ \tau(A \cap B) \ge \tau(A) \land \tau(B);$
- (O3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau(\bigcup_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau(A_i)$. Then the mapping $\tau : I^X \to I$ is called a smooth topology on X. The number $\tau(A)$ is called the degree of openness of A.

A mapping $\tau^*:I^X\to I$ is called a smooth cotopology [8] iff the following three conditions are satisfied:

- (C1) $\tau^*(0_X) = \tau^*(1_X) = 1;$
- (C2) $\forall A, B \in I^X, \ \tau^*(A \cup B) \ge \tau^*(A) \land \tau^*(B);$
- (C3) for every subfamily $\{A_i : i \in J\} \subseteq I^X$, $\tau^*(\cap_{i \in J} A_i) \ge \bigwedge_{i \in J} \tau^*(A_i)$.

If τ is a smooth topology on X, then the mapping $\tau^*: I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is a smooth cotopology on X. Conversely, if τ^* is a smooth cotopology on X, then the mapping $\tau: I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is a smooth topology on X [8].

Demirci [3] introduced the concepts of smooth closure and smooth interior in smooth topological spaces as follows:

Let (X,τ) be a s.t.s. and $A \in I^X$. Then the τ -smooth closure (resp., τ -smooth interior) of A, denoted by \overline{A} (resp., A^o), is defined by $\overline{A} = \cap \{K \in I^X : \tau^*(K) > 0, A \subseteq K\}$ (resp., $A^o = \cup \{K \in I^X : \tau(K) > 0, K \subseteq A\}$). Demirci [4] defined the families $W(\tau) = \{A \in I^X : A = A^o\}$ and $W^*(\tau) = \{A \in I^X : A = \overline{A}\}$, where (X,τ) is a s.t.s. Note that $A \in W(\tau) \Leftrightarrow A^c \in W^*(\tau)$.

Let (X,τ) and (Y,σ) be two smooth topological spaces. A function $f:X\to Y$ is called smooth continuous with respect to τ and σ [8] iff $\tau(f^{-1}(A))\geq \sigma(A)$ for every $A\in I^Y$. A function $f:X\to Y$ is called weakly smooth continuous with respect to τ and σ [8] iff $\sigma(A)>0\Rightarrow \tau(f^{-1}(A))>0$ for every $A\in I^Y$. In this paper, a weakly

smooth continuous function with respect to τ and σ is called a quasismooth continuous function with respect to τ and σ .

A function $f: X \to Y$ is smooth continuous with respect to τ and σ iff $\tau^*(f^{-1}(A)) \geq \sigma^*(A)$ for every $A \in I^Y$. A function $f: X \to Y$ is weakly smooth continuous with respect to τ and σ iff $\sigma^*(A) > 0 \Rightarrow \tau^*(f^{-1}(A)) > 0$ for every $A \in I^Y$ [8].

A function $f: X \to Y$ is called smooth open (resp., smooth closed) with respect to τ and σ [8] iff $\tau(A) \le \sigma(f(A))$ (resp., $\tau^*(A) \le \sigma^*(f(A))$) for every $A \in I^X$.

A function $f: X \to Y$ is called smooth preserving (resp., strict smooth preserving) with respect to τ and σ [5] iff $\sigma(A) \ge \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) \ge \tau(f^{-1}(B))$ (resp., $\sigma(A) > \sigma(B) \Leftrightarrow \tau(f^{-1}(A)) > \tau(f^{-1}(B))$) for every $A, B \in I^Y$.

If $f: X \to Y$ is a smooth preserving function (resp., a strict smooth preserving function) with respect to τ and σ , then $\sigma^*(A) \ge \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) \ge \tau^*(f^{-1}(B))$ (resp., $\sigma^*(A) > \sigma^*(B) \Leftrightarrow \tau^*(f^{-1}(A)) > \tau^*(f^{-1}(B))$) for every $A, B \in I^Y$ [5].

A function $f: X \to Y$ is called smooth open preserving (resp., strict smooth open preserving) with respect to τ and σ [5] iff $\tau(A) \ge \tau(B) \Rightarrow \sigma(f(A)) \ge \sigma(f(B))$ (resp., $\tau(A) > \tau(B) \Rightarrow \sigma(f(A)) > \sigma(f(B))$) for every $A, B \in I^X$.

Let (X,τ) be a s.t.s., $\alpha \in [0,1)$ and $A \in I^X$. The τ -smooth α -closure (resp., τ -smooth α -interior) of A, denoted by \overline{A}_{α} (resp., A_{α}^o), is defined by $\overline{A}_{\alpha} = \cap \{K \in I^X : \tau^*(K) > \alpha \tau^*(A), A \subseteq K\}$ (resp., $A_{\alpha}^o = \cup \{K \in I^X : \tau(K) > \alpha \tau(A), K \subseteq A\}$) [6]. In [7] we defined the families $W_{\alpha}(\tau) = \{A \in I^X : A = A_{\alpha}^o\}$ and $W_{\alpha}^*(\tau) = \{A \in I^X : A = \overline{A}_{\alpha}\}$, where (X,τ) is a s.t.s. Note that $A \in W_{\alpha}(\tau) \Leftrightarrow A^c \in W_{\alpha}^*(\tau)$.

3. weak smooth α -closure and weak smooth α -interior

In this section, we investigate some properties of the weak smooth α closure and weak smooth α -interior of a fuzzy set in smooth topological
spaces.

 $W_{\alpha}(\tau), K \subseteq A\}$).

THEOREM 3.2. Let (X, τ) be a s.t.s., $\alpha \in [0, 1)$ and $A \in I^X$. Then

- (a) $A \subseteq wcl_{\alpha}(A) \subseteq \overline{A} \subseteq \overline{A}_{\alpha}$,
- (b) $A^o_\alpha \subseteq A^o \subseteq wint_\alpha(A) \subseteq A$.

Proof. (a) Let $K \in I^X$ and $A \subseteq K$. Then $\tau^*(K) > \alpha \tau^*(A) \Rightarrow \tau^*(K) > 0$ and $\tau^*(K) > 0 \Rightarrow K = \overline{K}_{\alpha}$, i.e., $K \in W_{\alpha}^*(\tau)$ by Theorem 3.6[6]. From the definitions of \overline{A}_{α} , \overline{A} and $wcl_{\alpha}(A)$ we have $A \subseteq wcl_{\alpha}(A) \subseteq \overline{A} \subseteq \overline{A}_{\alpha}$.

(b) Let $K \in I^X$ and $K \subseteq A$. Then $\tau(K) > \alpha \tau(A) \Rightarrow \tau(K) > 0$ and $\tau(K) > 0 \Rightarrow K = K^o_{\alpha}$, i.e., $K \in W_{\alpha}(\tau)$ by Theorem 3.6[6]. From the definition of A^o_{α} , A^o and $wint_{\alpha}(A)$ we have $A^o_{\alpha} \subseteq A^o \subseteq wint_{\alpha}(A) \subseteq A$.

Theorem 3.3. Let (X,τ) be a s.t.s., $\alpha \in [0,1)$ and $A,B \in I^X$. Then

- (a) $A \subseteq B \Rightarrow wcl_{\alpha}(A) \subseteq wcl_{\alpha}(B)$,
- (b) $A \subseteq B \Rightarrow wint_{\alpha}(A) \subseteq wint_{\alpha}(B)$,
- (c) $(wcl_{\alpha}(A))^c = wint_{\alpha}(A^c),$
- (d) $wcl_{\alpha}(A) = (wint_{\alpha}(A^c))^c$,
- (e) $(wint_{\alpha}(A))^c = wcl_{\alpha}(A^c)$,
- (f) $wint_{\alpha}(A) = (wcl_{\alpha}(A^c))^c$.

Proof. (a) and (b) follow directly from Definition 3.2.

(c) From Definition 3.2 we have

$$(wcl_{\alpha}(A))^{c} = (\cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), A \subseteq K\})^{c}$$

$$= \cup \{K^{c} : K \in I^{X}, K^{c} \in W_{\alpha}(\tau), K^{c} \subseteq A^{c}\}$$

$$= \cup \{U \in I^{X} : U \in W_{\alpha}(\tau), U \subseteq A^{c}\}$$

$$= wint_{\alpha}(A^{c}).$$

(d), (e) and (f) can be easily obtained from (c).

DEFINITION 3.4[4]. Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is called weak smooth continuous with respect to τ and σ iff $A \in W(\sigma) \Rightarrow f^{-1}(A) \in W(\tau)$ for every $A \in I^Y$.

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is weak smooth continuous with respect to τ and σ iff $A \in W^*(\sigma) \Rightarrow f^{-1}(A) \in W^*(\tau)$ for every $A \in I^Y$ [4].

THEOREM 3.5. Let (X,τ) and (Y,σ) be two smooth topological spaces. If a function $f:X\to Y$ is quasi-smooth continuous with respect to τ and σ , then $f:X\to Y$ is weak smooth continuous with respect to τ and σ .

Proof. Let $f: X \to Y$ be a quasi-smooth continuous function with respect to τ and σ . Then by Proposition 3.5[3] $f^{-1}(A^o) \subseteq (f^{-1}(A))^o$ for every $A \in I^Y$. Let $A \in W(\sigma)$, i.e., $A = A^o$. Then $f^{-1}(A) = f^{-1}(A^o) \subseteq (f^{-1}(A))^o$. From the definition of smooth interior we have $(f^{-1}(A))^o \subseteq f^{-1}(A)$. Hence $f^{-1}(A) = (f^{-1}(A))^o$, i.e., $f^{-1}(A) \in W(\tau)$. Therefore $f: X \to Y$ is weak smooth continuous with respect to τ and σ .

DEFINITION 3.6. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak smooth α -continuous with respect to τ and σ iff $A \in W_{\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{\alpha}(\tau)$ for every $A \in I^{Y}$.

THEOREM 3.7. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. If a function $f : X \to Y$ is weak smooth α -continuous with respect to τ and σ , then

- (a) $f(wcl_{\alpha}(A)) \subseteq wcl_{\alpha}(f(A))$ for every $A \in I^X$,
- (b) $wcl_{\alpha}(f^{-1}(A)) \subseteq f^{-1}(wcl_{\alpha}(A))$ for every $A \in I^{Y}$,
- (c) $f^{-1}(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f^{-1}(A))$ for every $A \in I^{Y}$.

Proof. (a) For every $A \in I^X$, we have

```
f^{-1}(wcl_{\alpha}(f(A)))
= f^{-1}(\cap \{U \in I^{Y} : U \in W_{\alpha}^{*}(\sigma), f(A) \subseteq U\})
\supseteq f^{-1}(\cap \{U \in I^{Y} : f^{-1}(U) \in W_{\alpha}^{*}(\tau), A \subseteq f^{-1}(U)\})
= \cap \{f^{-1}(U) \in I^{X} : U \in I^{Y}, f^{-1}(U) \in W_{\alpha}^{*}(\tau), A \subseteq f^{-1}(U)\}
\supseteq \cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), A \subseteq K\}
= wcl_{\alpha}(A).
```

Hence $f(wcl_{\alpha}(A)) \subseteq wcl_{\alpha}(f(A))$.

(b) For every $A \in I^Y$, we have

$$f^{-1}(wcl_{\alpha}(A))$$

$$= f^{-1}(\cap \{U \in I^{Y} : U \in W_{\alpha}^{*}(\sigma), A \subseteq U\})$$

$$\supseteq f^{-1}(\cap \{U \in I^{Y} : f^{-1}(U) \in W_{\alpha}^{*}(\tau), f^{-1}(A) \subseteq f^{-1}(U)\})$$

$$= \cap \{f^{-1}(U) \in I^{X} : U \in I^{Y}, f^{-1}(U) \in W_{\alpha}^{*}(\tau),$$

$$f^{-1}(A) \subseteq f^{-1}(U)\}$$

$$\supseteq \cap \{K \in I^{X} : K \in W_{\alpha}^{*}(\tau), f^{-1}(A) \subseteq K\}$$

$$= wcl_{\alpha}(f^{-1}(A)).$$

(c) For every $A \in I^Y$, we have

$$f^{-1}(wint_{\alpha}(A))$$

$$= f^{-1}(\cup \{U \in I^{Y} : U \in W_{\alpha}(\sigma), U \subseteq A\})$$

$$\subseteq f^{-1}(\cup \{U \in I^{Y} : f^{-1}(U) \in W_{\alpha}(\tau), f^{-1}(U) \subseteq f^{-1}(A)\})$$

$$= \cup \{f^{-1}(U) \in I^{X} : U \in I^{Y}, f^{-1}(U) \in W_{\alpha}(\tau),$$

$$f^{-1}(U) \subseteq f^{-1}(A)\}$$

$$\subseteq \cup \{K \in I^{X} : K \in W_{\alpha}(\tau), K \subseteq f^{-1}(A)\}$$

$$= wint_{\alpha}(f^{-1}(A)).$$

4. Types of weak* smooth compactness

In this section, we introduce the concepts of several types of weak* smooth compactness in smooth topological spaces and investigate some of their properties.

We define the families $W_{w\alpha}(\tau) = \{A \in I^X : A = wint_{\alpha}(A)\}$ and $W_{w\alpha}^*(\tau) = \{A \in I^X : A = wcl_{\alpha}(A)\}$, where (X, τ) is a s.t.s. and $\alpha \in [0, 1)$. Then

$$A \in W_{w\alpha}(\tau) \Leftrightarrow A^c \in W_{w\alpha}^*(\tau),$$

$$A \in W_{\alpha}(\tau) \Rightarrow A \in W(\tau) \Rightarrow A \in W_{w\alpha}(\tau),$$

$$A \in W_{\alpha}^*(\tau) \Rightarrow A \in W^*(\tau) \Rightarrow A \in W_{w\alpha}^*(\tau).$$

DEFINITION 4.1. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak* smooth α -continuous with respect to τ and σ iff $A \in W_{w\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W_{w\alpha}(\tau)$ for every $A \in I^Y$.

Let (X, τ) and (Y, σ) be two smooth topological spaces. A function $f: X \to Y$ is weak* smooth α -continuous with respect to τ and σ iff $A \in W^*_{w\alpha}(\sigma) \Rightarrow f^{-1}(A) \in W^*_{w\alpha}(\tau)$ for every $A \in I^Y$.

DEFINITION 4.2. Let (X, τ) and (Y, σ) be two smooth topological spaces and let $\alpha \in [0, 1)$. A function $f: X \to Y$ is called weak* smooth α -open (resp., weak* smooth α -closed) with respect to τ and σ iff $A \in W_{w\alpha}(\tau) \Rightarrow f(A) \in W_{w\alpha}(\sigma)$ (resp., $A \in W_{w\alpha}^*(\tau) \Rightarrow f(A) \in W_{w\alpha}^*(\sigma)$) for every $A \in I^X$.

DEFINITION 4.3. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak* smooth compact iff every family in $W_{w\alpha}(\tau)$ covering X has a finite subcover.

DEFINITION 4.4. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak* smooth nearly compact iff for every family $\{A_i : i \in J\}$ in $W_{w\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_X$.

DEFINITION 4.5. Let $\alpha \in [0,1)$. A s.t.s. (X,τ) is called weak* smooth almost compact iff for every family $\{A_i : i \in J\}$ in $W_{w\alpha}(\tau)$ covering X, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{A_i} = 1_X$.

THEOREM 4.6. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective and weak* smooth α -continuous function with respect to τ and σ . If (X, τ) is weak* smooth compact, then so is (Y, σ) .

Proof. Let $\{A_i : i \in J\}$ be a family in $W_{w\alpha}(\sigma)$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $\bigcup_{i \in J} f^{-1}(A_i) = f^{-1}(1_Y) = 1_X$. Since $f : X \to Y$ is weak* smooth α -continuous with respect to τ and σ , $\{f^{-1}(A_i) : i \in J\} \subseteq W_{w\alpha}(\tau)$. Since (X,τ) is weak* smooth compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} f^{-1}(A_i) = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} f^{-1}(A_i)) = \bigcup_{i \in J_0} f(f^{-1}(A_i)) = \bigcup_{i \in J_0} A_i$. Therefore (Y,σ) is weak* smooth compact.

THEOREM 4.7. Let (X,τ) and (Y,σ) be two smooth topological spaces and let $\alpha \in [0,1)$. If a function $f:X \to Y$ is weak smooth α -continuous with respect to τ and σ , then $f:X \to Y$ is weak* smooth α -continuous with respect to τ and σ .

Proof. Let $f: X \to Y$ be a weak smooth α-continuous function with respect to τ and σ . Then by Theorem 3.7 $f^{-1}(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f^{-1}(A))$ for every $A \in I^{Y}$. Let $A \in W_{w\alpha}(\sigma)$, i.e., $A = wint_{\alpha}(A)$. Then $f^{-1}(A) = f^{-1}(wint_{\alpha}(A)) \subseteq wint_{\alpha}(f^{-1}(A))$. From the definition of weak smooth α-interior we have $wint_{\alpha}(f^{-1}(A)) \subseteq f^{-1}(A)$. Hence $f^{-1}(A) = wint_{\alpha}(f^{-1}(A))$, i.e., $f^{-1}(A) \in W_{w\alpha}(\tau)$. Therefore $f: X \to Y$ is weak* smooth α-continuous with respect to τ and σ . \square

We obtain the following corollary from Theorem 4.6 and 4.7.

COROLLARY 4.8. Let (X, τ) and (Y, σ) be two smooth topological spaces, $\alpha \in [0, 1)$ and $f: X \to Y$ a surjective and weak smooth α -continuous function with respect to τ and σ . If (X, τ) is weak* smooth compact, then so is (Y, σ) .

THEOREM 4.9. Let $\alpha \in [0,1)$. Then a weak* smooth nearly compact s.t.s. (X,τ) is weak* smooth almost compact.

Proof. Let $\{A_i : i \in J\}$ be a family in $W_{w\alpha}(\tau)$ covering X. Since (X,τ) is weak* smooth nearly compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_X$. Since $(\overline{A_i})^o \subseteq \overline{A_i}$ for each $i \in J$ by Proposition 3.2[3], $1_X = \bigcup_{i \in J_0} (\overline{A_i})^o \subseteq \bigcup_{i \in J_0} \overline{A_i}$. So $\bigcup_{i \in J_0} \overline{A_i} = 1_X$. Hence (X,τ) is weak* smooth almost compact.

THEOREM 4.10. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$ and $f: X \to Y$ a surjective and quasi-smooth continuous function with respect to τ and σ . If (X,τ) is weak* smooth almost compact, then so is (Y,σ) .

Proof. Let $\{A_i : i \in J\}$ be a family in $W_{w\alpha}(\sigma)$ covering Y, i.e., $\bigcup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \bigcup_{i \in J} f^{-1}(A_i)$. Since f is quasismooth continuous with respect to τ and σ , f is weak* smooth continuous with respect to τ and σ by Theorem 3.5 and 4.7. Hence $f^{-1}(A_i) \in W_{w\alpha}(\tau)$ for each $i \in J$. Since (X, τ) is weak* smooth almost compact, there exists a finite subset J_0 of J such that $\bigcup_{i \in J_0} \overline{f^{-1}(A_i)} = 1_X$.

From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} \overline{f^{-1}(A_i)}) = \bigcup_{i \in J_0} f(\overline{f^{-1}(A_i)})$. Since $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , from Proposition 3.5[3] we have $\overline{f^{-1}(A_i)} \subseteq f^{-1}(\overline{A_i})$ for each $i \in J$. Hence $1_Y = \bigcup_{i \in J_0} f(\overline{f^{-1}(A_i)}) \subseteq \bigcup_{i \in J_0} f(f^{-1}(\overline{A_i})) = \bigcup_{i \in J_0} \overline{A_i}$, i.e., $\bigcup_{i \in J_0} \overline{A_i} = 1_Y$. Thus (Y, σ) is weak* smooth almost compact.

THEOREM 4.11. Let (X,τ) and (Y,σ) be two smooth topological spaces, $\alpha \in [0,1)$ and $f: X \to Y$ a surjective, quasi-smooth continuous and smooth open function with respect to τ and σ . If (X,τ) is weak* smooth nearly compact, then so is (Y,σ) .

Proof. Let $\{A_i: i \in J\}$ be a family in $W_{w\alpha}(\sigma)$ covering Y, i.e., $\cup_{i \in J} A_i = 1_Y$. Then $1_X = f^{-1}(1_Y) = \cup_{i \in J} f^{-1}(A_i)$. Since f is quasismooth continuous with respect to τ and σ , f is weak* smooth continuous with respect to τ and σ by Theorem 3.5 and 4.7. Hence $f^{-1}(A_i) \in W_{w\alpha}(\tau)$ for each $i \in J$. Since (X,τ) is weak* smooth nearly compact, there exists a finite subset J_0 of J such that $\cup_{i \in J_0} (\overline{f^{-1}(A_i)})^o = 1_X$. From the surjectivity of f we have $1_Y = f(1_X) = f(\bigcup_{i \in J_0} (\overline{f^{-1}(A_i)})^o) = \bigcup_{i \in J_0} f((\overline{f^{-1}(A_i)})^o)$. Since $f: X \to Y$ is smooth open with respect to τ and σ , from Proposition 3.6[3] we have $f((\overline{f^{-1}(A_i)})^o) \subseteq (f(\overline{f^{-1}(A_i)})^o)^o$ for each $i \in J$. Since $f: X \to Y$ is quasi-smooth continuous with respect to τ and σ , from Proposition 3.5[3] we have $\overline{f^{-1}(A_i)} \subseteq f^{-1}(\overline{A_i})$ for each $i \in J$. Hence $1_Y = \bigcup_{i \in J_0} f((\overline{f^{-1}(A_i)})^o) \subseteq \bigcup_{i \in J_0} (f(\overline{f^{-1}(A_i)}))^o \subseteq \bigcup_{i \in J_0} (f(\overline{f^{-1}(A_i)}))^o = \bigcup_{i \in J_0} (\overline{A_i})^o$, i.e., $\bigcup_{i \in J_0} (\overline{A_i})^o = 1_Y$. Thus (Y, σ) is weak* smooth nearly compact.

References

- 1. R. Badard, *Smooth axiomatics*, First IFSA Congress, Palma de Mallorca (July 1986).
- 2. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 3. M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems 90 (1997), 83-88.
- 4. ______, Three topological structures of smooth topological spaces, Fuzzy Sets and Systems **101** (1999), 185-190.
- 5. M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, *Almost compactness and near compactness in smooth topological spaces*, Fuzzy Sets and Systems **62** (1994), 193-202.

- 6. C. K. Park, W. K. Min and M. H. Kim, α -compactness in smooth topological spaces, Int. J. Math. and Math. Sci. (to appear).
- 7. _____, Quasi-smooth α -structure of smooth topological spaces, (submitted).
- 8. A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375
- 9. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: wkmin@cc.kangwon.ac.kr

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: kimmw@kangwon.ac.kr