Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 137-146

THE WEAK DENJOY_{*} EXTENSION OF THE BOCHNER, DUNFORD, PETTIS AND MCSHANE INTEGRALS

CHUN-KEE PARK, MEE NA OH AND WOUNG KYUN KIM

ABSTRACT. In this paper we introduce the concepts of the weak Denjoy_{*} integral of real-valued functions and the weak Denjoy_{*}-Dunford, weak Denjoy_{*}-Pettis, weak Denjoy_{*}-Bochner, weak Denjoy_{*}-McShane integrals of Banach-valued functions and then investigate some of their properties.

1. Introduction

The Denjoy integral of real-valued functions which is an extension of the Lebesgue integral was studied by some authors ([4],[5],[7]). R. A. Gordon [5] and S. Saks [9] also studied the Denjoy_{*} integral of real-valued functions. The McShane integral of real-valued functions is an extension of the Riemann integral. The McShane integral of realvalued functions is equivalent to the Lebesgue integral. D. H. Fremlin [1] and D. H. Fremlin, J. Mendoza [2] studied the McShane integral of Banach-valued functions. J. L. Gamez, J. Mendoza [3] and R. A. Gordon [4] studied the Denjoy extension of the Bochner, Pettis and Dunford integrals. J. M. Park and D. H. Lee [8] defined the Denjoy-McShane integral which is an extension of the McShane integral and obtained some of their properties.

In this paper we introduce the concepts of the weak Denjoy_{*} integral of real-valued functions which is an extension of the Denjoy_{*} integral of real-valued functions and the weak Denjoy_{*}-Dunford, weak

Received July 7, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 28B05, 26A39, 46G10.

Key words and phrases: Denjoy integral, weak Denjoy_{*} integral, weak Denjoy_{*}-Dunford integral, weak Denjoy_{*}-Pettis integral, weak Denjoy_{*}-Bochner integral, weak Denjoy_{*}-McShane integral.

Denjoy_{*}-Pettis, weak Denjoy_{*}-Bochner, weak Denjoy_{*}-McShane integrals of Banach-valued functions and then investigate some of their properties.

2. Preliminaries

Throughout this paper, X will denote a real Banach space and X^* its dual. Let $\omega(F, [c, d]) = \sup \{ ||F(y) - F(x)|| : c \le x < y \le d \}$ denote the oscillation of a function $F : [a, b] \to X$ on an interval [c, d].

DEFINITION 2.1[9]. Let $F : [a, b] \to X$ and let $E \subset [a, b]$.

(a) The function F is absolutely continuous on E (F is AC on E) if for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{n} \|F(d_i) - F(c_i)\| < \epsilon$ whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^{n} (d_i - c_i) < \delta$. The function F is absolutely continuous in the restricted sense on E (Fis AC_{*} on E) if F is bounded on an interval that contains E and for each $\epsilon > 0$ there exists $\delta > 0$ such that $\sum_{i=1}^{n} \omega(F, [c_i, d_i]) < \epsilon$ whenever $\{[c_i, d_i] : 1 \le i \le n\}$ is a finite collection of non-overlapping intervals that have endpoints in E and satisfy $\sum_{i=1}^{n} (d_i - c_i) < \delta$.

(b) The function F is generalized absolutely continuous on E (F is ACG on E) if F is continuous on E and E can be expressed as a countable union of sets on each of which F is AC. The function F is generalized absolutely continuous in the restricted sense on E (F is ACG_{*} on E) if F is continuous on E and E can be expressed as a countable union of sets on each of which F is ACC_{*}.

DEFINITION 2.2[9]. Let $F : [a, b] \to X$ and let $t \in (a, b)$. A vector z in X is the approximate derivative of F at t if there exists a measurable set $E \subset [a, b]$ that has t as a point of density such that $\lim_{\substack{s \to t \\ s \in E}} \frac{F(s) - F(t)}{s - t} = z$. We will write $F'_{ap}(t) = z$.

A function $f : [a, b] \to \mathbb{R}$ is Denjoy (resp. Denjoy_{*}) integrable on [a, b] if there exists an ACG (resp. ACG_{*}) function $F : [a, b] \to \mathbb{R}$ such that $F'_{ap} = f$ (resp. F' = f) almost everywhere on [a, b]. The function f is Denjoy (resp. Denjoy_{*}) integrable on a set $E \subset [a, b]$ if $f\chi_E$ is Denjoy (resp. Denjoy_{*}) integrable on [a, b].

DEFINITION 2.3[4]. (a) A function $f : [a, b] \to X$ is Denjoy-Dunford integrable on [a, b] if for each $x^* \in X^*$ the function x^*f is Denjoy integrable on [a, b] and if for every interval I in [a, b] there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = \int_I x^*f$ for all $x^* \in X^*$.

(b) A function $f : [a, b] \to X$ is Denjoy-Pettis integrable on [a, b] if f is Denjoy-Dunford integrable on [a, b] and if $x_I^{**} \in X$ for every interval I in [a, b].

(c) A function $f : [a, b] \to X$ is Denjoy-Bochner integrable on [a, b] if there exists an ACG function $F : [a, b] \to X$ such that F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b].

A function $f : [a, b] \to X$ is integrable in one of the above senses on a set $E \subset [a, b]$ if the function $f\chi_E$ is integrable in that sense on [a, b].

DEFINITION 2.4[6]. A McShane partition of [a, b] is a finite collection $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ such that $\{[c_i, d_i] : 1 \leq i \leq n\}$ is a non-overlapping family of subintervals of [a, b] covering [a, b] and $t_i \in [a, b]$ for each $i \leq n$. A gauge on [a, b] is a function $\delta : [a, b] \to (0, \infty)$. A McShane partition $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is subordinate to a gauge δ if $[c_i, d_i] \subset (t_i - \delta(t_i), t_i + \delta(t_i))$ for every $i \leq n$. If $f : [a, b] \to X$ and if $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a McShane partition of [a, b], we will denote $f(\mathcal{P})$ for $\sum_{i=1}^{n} f(t_i)(d_i - c_i)$. A function $f : [a, b] \to X$ is McShane integrable on [a, b], with McShane integral z, if for each $\varepsilon > 0$ there exists a gauge $\delta : [a, b] \to (0, \infty)$ such that $||f(\mathcal{P}) - z|| < \varepsilon$ whenever $\mathcal{P} = \{([c_i, d_i], t_i) : 1 \leq i \leq n\}$ is a McShane partition of [a, b], subordinate to δ .

DEFINITION 2.5[8]. A function $f : [a, b] \to X$ is Denjoy-McShane integrable on [a, b] if there exists a continuous function $F : [a, b] \to X$ such that

(i) for each $x^* \in X^* \ x^*F$ is ACG on [a, b] and

(ii) for each $x^* \in X^*$ x^*F is approximately differentiable almost everywhere on [a, b] and $(x^*F)'_{ap} = x^*f$ almost everywhere on [a, b].

Chun-Kee Park, Mee Na Oh and Woung Kyun Kim

3. The weak Denjoy_{*} extension

In this section, we introduce the concepts of the weak Denjoy_{*} integral of real-valued functions and the weak Denjoy_{*}-Dunford, weak Denjoy_{*}-Pettis, weak Denjoy_{*}-Bochner, weak Denjoy_{*}-McShane integrals of Banach-valued functions and then investigate some of their properties.

DEFINITION 3.1. A function $f : [a, b] \to \mathbb{R}$ is weak Denjoy_{*} integrable on [a, b] if there exists an ACG_{*} function $F : [a, b] \to \mathbb{R}$ such that $F'_{ap} = f$ almost everywhere on [a, b]. The function f is weak Denjoy_{*} integrable on a set $E \subset [a, b]$ if $f\chi_E$ is weak Denjoy_{*} integrable on [a, b].

Since every ACG_* function is ACG, from [4, Theorem 24] we obtain the following:

Let $F : [a, b] \to \mathbb{R}$ be ACG_{*} on [a, b]. If $F'_{ap} = 0$ almost everywhere on [a, b], then F is constant on [a, b].

This guarantees the uniqueness of the weak Denjoy_{*} integral.

Note that $Denjoy_*$ integrability \Longrightarrow weak $Denjoy_*$ integrability \Longrightarrow Denjoy integrability.

DEFINITION 3.2. (a) A function $f : [a, b] \to X$ is weak Denjoy_{*}-Dunford integrable on [a, b] if for each $x^* \in X^*$ the function x^*f is weak Denjoy_{*} integrable on [a, b] and if for every interval I in [a, b]there exists a vector x_I^{**} in X^{**} such that $x_I^{**}(x^*) = \int_I x^*f$ for all $x^* \in X^*$.

(b) A function $f : [a, b] \to X$ is weak Denjoy_{*}-Pettis integrable on [a, b] if f is weak Denjoy_{*}-Dunford integrable on [a, b] and if $x_I^{**} \in X$ for every interval I in [a, b].

(c) A function $f : [a, b] \to X$ is weak Denjoy_{*}-Bochner integrable on [a, b] if there exists an ACG_{*} function $F : [a, b] \to X$ such that F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b].

A function $f : [a, b] \to X$ is integrable in one of the above senses on a set $E \subset [a, b]$ if the function $f\chi_E$ is integrable in that sense on [a, b].

DEFINITION 3.3. A function $f : [a, b] \to X$ is weak Denjoy_{*}-McShane integrable on [a, b] if there exists a continuous function $F : [a, b] \to X$ such that

(i) for each $x^* \in X^*$ x^*F is ACG_{*} on [a, b] and

(ii) for each $x^* \in X^* x^* F$ is approximately differentiable almost everywhere on [a, b] and $(x^* F)'_{ap} = x^* f$ almost everywhere on [a, b].

Note that if $f : [a, b] \to X$ is weak Denjoy_{*}-McShane integrable on [a, b] then f is Denjoy-McShane integrable on [a, b].

THEOREM 3.4. If $f : [a, b] \to X$ is Bochner integrable on [a, b], then f is weak Denjoy_{*}-Bochner integrable on [a, b].

Proof. If $f : [a, b] \to X$ is Bochner integrable on [a, b], then there exists an AC function $F : [a, b] \to X$ such that F is differentiable almost everywhere on [a, b] and F' = f almost everywhere on [a, b]. By [5, Theorem 6.4], $F : [a, b] \to X$ is AC_{*}. Hence F is ACG_{*} and approximately differentiable almost everywhere on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b]. Thus f is weak Denjoy_{*}-Bochner integrable on [a, b].

THEOREM 3.5. If $f : [a, b] \to X$ is Dunford integrable on [a, b], then f is weak Denjoy_{*}-Dunford integrable on [a, b].

Proof. If $f : [a, b] \to X$ is Dunford integrable on [a, b], then x^*f is Lebesgue integrable on [a, b] for each $x^* \in X^*$ and for every measurable subset E in [a, b] there exists a vector x_E^{**} in X^{**} such that $x_E^{**}(x^*) = \int_E x^*f$ for all $x^* \in X^*$. Since x^*f is weak Denjoy_{*} integrable on [a, b]for each $x^* \in X^*$, f is weak Denjoy_{*}-Dunford integrable on [a, b]. \Box

THEOREM 3.6. If $f : [a, b] \to X$ is Pettis integrable on [a, b], then f is weak Denjoy_{*}-Pettis integrable on [a, b].

Proof. If $f : [a, b] \to X$ is Pettis integrable on [a, b], then f is Dunford integrable on [a, b] and $x_E^{**} \in X$ for every measurable set E in [a, b]. Hence f is weak Denjoy_{*}-Dunford integrable on [a, b] by Theorem 3.5 and $x_I^{**} \in X$ for every interval I in [a, b]. Thus f is weak Denjoy_{*}-Pettis integrable on [a, b].

Since every weak $Denjoy_*$ integrable function is Denjoy integrable, we can obtain the following theorem.

THEOREM 3.7. (a) If $f : [a, b] \to X$ is weak Denjoy_{*}-Bochner integrable on [a, b], then f is Denjoy-Bochner integrable on [a, b].

(b) If $f : [a, b] \to X$ is weak Denjoy_{*}-Dunford integrable on [a, b], then f is Denjoy-Dunford integrable on [a, b].

(c) If $f : [a, b] \to X$ is weak Denjoy_{*}-Pettis integrable on [a, b], then f is Denjoy-Pettis integrable on [a, b].

THEOREM 3.8. If $f : [a, b] \to X$ is McShane integrable on [a, b], then f is weak Denjoy_{*}-McShane integrable on [a, b].

Proof. Let $f : [a, b] \to X$ be McShane integrable on [a, b]. Then for each $x^* \in X^* x^* f$ is McShane integrable on [a, b] and hence $x^* f$ is Lebesgue integrable on [a, b]. Let $F(t) = (M) \int_a^t f$. Then F is continuous on [a, b] by [6, Theorem 8] and for each $x^* \in X^* x^* F(t) =$ $(M) \int_a^t x^* f = (L) \int_a^t x^* f$. Hence $x^* F$ is AC and so $x^* F$ is ACG_{*} and $(x^* F)' = x^* f$ almost everywhere on [a, b]. Thus f is weak Denjoy_{*}-McShane integrable on [a, b].

THEOREM 3.9. If $f : [a, b] \to X$ is weak Denjoy_{*}-Bochner integrable on [a, b], then f is weak Denjoy_{*}-McShane integrable on [a, b].

Proof. Let $f : [a, b] \to X$ be weak Denjoy_{*}-Bochner integrable on [a, b]. Then there exists an ACG_{*} function $F : [a, b] \to X$ such that F is approximately differentiable almost everywhere on [a, b] and $F'_{ap} = f$ almost everywhere on [a, b]. For each $x^* \in X^* \ x^*F$ is also ACG_{*} on [a, b] and x^*F is approximately differentiable almost everywhere on [a, b] and $(x^*F)'_{ap} = x^*f$ almost everywhere on [a, b]. Hence f is weak Denjoy_{*}-McShane integrable on [a, b].

THEOREM 3.10. If $f : [a, b] \to X$ is weak $Denjoy_*$ -McShane integrable on [a, b], then f is weak $Denjoy_*$ -Pettis integrable on [a, b].

Proof. Suppose that $f : [a, b] \to X$ is weak Denjoy_{*}-McShane integrable on [a, b]. Let $F(t) = (wD_*M) \int_a^t f$. Since x^*F is ACG_{*} on [a, b]and x^*F is approximately differentiable almost everywhere on [a, b] and $(x^*F)'_{ap} = x^*f$ almost everywhere on [a, b] for each $x^* \in X^*$, x^*f is weak Denjoy_{*} integrable on [a, b] for each $x^* \in X^*$. For every interval [c, d] in [a, b], we have

The weak Denjoy_{*} extension

$$\begin{aligned} x^*(F(d) - F(c)) &= x^*F(d) - x^*F(c) \\ &= (wD_*) \int_a^d x^*f - (wD_*) \int_a^c x^*f \\ &= (wD_*) \int_c^d x^*f. \end{aligned}$$

Since $F(d) - F(c) \in X$, f is weak Denjoy_{*}-Pettis integrable on [a, b].

Since every weak Denjoy_{*}-Pettis integrable function $f : [a, b] \to X$ is Denjoy-Pettis integrable, we can obtain the following theorem from [4, Theorem 38].

THEOREM 3.11. Suppose that X contains no copy of c_0 and let f: $[a,b] \to X$. If f is weak Denjoy_{*}-Pettis integrable on [a,b], then every perfect set in [a,b] contains a portion on which f is Pettis integrable.

THEOREM 3.12. Suppose that X contains no copy of c_0 and let $f : [a, b] \to X$ be measurable. If f is weak Denjoy_{*}-McShane integrable on [a, b], then every perfect set in [a, b] contains a portion on which f is McShane integrable.

Proof. Let f be weak Denjoy_{*}-McShane integrable on [a, b]. Since f be weak Denjoy_{*}-Pettis integrable on [a, b] by Theorem 3.10, every perfect set in [a, b] contains a portion on which f is Pettis integrable by Theorem 3.11. Since f is measurable, f is McShane integrable on that portion by [6, Theorem 17].

EXAMPLE 3.13. A weak $Denjoy_*$ -Bochner integrable function that is not Bochner integrable.

Let X be an infinite dimensional Banach space. By the Dvoretsky-Rogers Theorem there exists a series $\sum_n x_n$ in X that converges unconditionally but not absolutely. For each positive integer n let $I_n = (\frac{1}{n+1}, \frac{1}{n})$ and define $f: [0,1] \to X$ by $f(t) = \frac{1}{\mu(I_n)} x_n$ for t in I_n and f(t) = 0 for all other values of t. The function f is measurable since it is countably valued, but f is not Bochner integrable on [0,1] since

$$\int_0^1 \|f\| = \sum_n \int_{I_n} \frac{1}{\mu(I_n)} \|x_n\| = \sum_n \|x_n\| = \infty.$$

Chun-Kee Park, Mee Na Oh and Woung Kyun Kim

Define $F: [0,1] \to X$ by

$$F(t) = \frac{t - \frac{1}{n+1}}{\mu(I_n)} x_n + \sum_{k=n+1}^{\infty} x_k \text{ for } t \in \left(\frac{1}{n+1}, \frac{1}{n}\right]$$

and F(0) = 0. Then F is continuous on [0,1] and F' = f almost everywhere on [0,1] and hence $F'_{ap} = f$ almost everywhere on [0,1]. Furthermore, the function F is ACG_{*} on [0,1] since F is AC_{*} on $\{0\}$ and on each of the intervals $[\frac{1}{n+1}, \frac{1}{n}]$. Hence the function f is weak Denjoy_{*}-Bochner integrable on [0,1].

EXAMPLE 3.14. A weak Denjoy_{*}-McShane integrable function that is not weak Denjoy_{*}-Bochner integrable.

Let $\{r_k\}$ be a listing of the rational numbers in [0, 1) and for each pair of positive integers n and k let

$$I_n^k = \left(r_k + \frac{1}{n+1}, r_k + \frac{1}{n}\right).$$

For each k define $f_k : [0,1] \to l_2$ by $f_k(t) = \{(n+1)\chi_{I_n^k}(t)\}$. Then the series $\sum_k 4^{-k} f_k$ is l_2 -valued almost everywhere on [0,1]. For each positive integer j let $A_j = \bigcup_k \{t \in [0,1] : |t-r_k| < 2^{-j-k}\}$ and let $A = \bigcap_j A_j$. Then $\mu(A) = 0$ and $\{r_k\} \subset A$.

Define $g : [0,1] \to l_2$ by $g(t) = \sum_k 4^{-k} f_k(t)$ for t in [0,1] - Aand g(t) = 0 for t in A. Then g is measurable and Pettis integrable on [0,1], but not Denjoy-Bochner integrable on [0,1] by [4, Example 42]. By [6, Theorem 17], g is McShane integrable on [0,1], but not weak Denjoy_{*}-Bochner integrable on [0,1]. By Theorem 3.8, g is weak Denjoy_{*}-McShane integrable on [0,1].

EXAMPLE 3.15. A weak Denjoy_{*}-Pettis integrable function that is not weak Denjoy_{*}-McShane integrable.

For each positive integer n let

$$I'_{n} = \left(\frac{1}{n+1}, \frac{n+\frac{1}{2}}{n(n+1)}\right), \ I''_{n} = \left(\frac{n+\frac{1}{2}}{n(n+1)}, \frac{1}{n}\right)$$

and define $f_n = [0,1] \to \mathbb{R}$ by $f_n(t) = 2n(n+1)(\chi_{I'_n}(t) - \chi_{I''_n}(t))$. Define $f : [0,1] \to c_0$ by $f(t) = \{f_n(t)\}$. Then by [4, Example 44]

 x^*f is Lebesgue integrable on [0,1] for each $x^* = \{\alpha_n\} \in l_1$. Hence x^*f is weak Denjoy_{*} integrable on [0,1] for each $x^* = \{\alpha_n\} \in l_1$ and $\int_E f = \{\int_E f_n\}$ for every measurable set $E \subset [0,1]$. For each interval $I \subset [0,1]$ we have $\int_I f \in c_0$ by the choice of $\{f_n\}$ and it follows that f is weak Denjoy_{*}-Pettis integrable on [0,1]. By [8, Example 3.8], f is not Denjoy-McShane integrable on [0,1]. Hence f is not weak Denjoy_{*}-McShane integrable on [0,1].

THEOREM 3.16. If $f : [a, b] \to X$ is weak Denjoy_{*}-Dunford integrable on [a, b], then f is weakly measurable.

Proof. If $f : [a, b] \to X$ is weak Denjoy_{*}-Dunford integrable on [a, b], then x^*f is weak Denjoy_{*} integrable on [a, b] for all $x^* \in X^*$. Hence x^*f is measurable for all $x^* \in X^*$ by [4, Theorem 12]. Thus f is weakly measurable.

THEOREM 3.17. If $f : [a, b] \to X$ is bounded and weak Denjoy_{*}-Dunford integrable on [a, b], then f is Dunford integrable on [a, b].

Proof. If $f : [a, b] \to X$ is bounded and weak Denjoy_{*}-Dunford integrable on [a, b], then x^*f is bounded and weak Denjoy_{*} integrable on [a, b] for all $x^* \in X^*$. Hence x^*f is Lebesgue integrable on [a, b] for all $x^* \in X^*$ by [5, Theorem 15.9]. Thus f is Dunford integrable on [a, b].

References

- D. H. Fremlin, The Henstock and McShane integrals of vectorvalued functions, Illinois J. Math. 38 (1994), 471-479.
- D. H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127-147.
- 3. J. L. Gamez and J. Mendoza, On Denjoy-Dunford and Denjoy-Pettis integrals, Studia Math. 130 (1998), 115-133.
- R. A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.
- 5. ____, The integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, R.I., 1994.
- <u>.</u>, The McShane integral of Banach-valued functions, Illinois J. Math. **34** (1990), 557-567.

Chun-Kee Park, Mee Na Oh and Woung Kyun Kim

- S. Hu and V. Lakshmikantham, Some remarks on generalized Riemann integral, J. Math. Anal. Appl. 137 (1989), 515-527.
- J. M. Park and D. H. Lee, The Denjoy extension of the McShane integral, Bull. Korean Math. Soc. 33 No. 3 (1996), 411-417.
- 9. S. Saks, Theory of the integral, Dover, New York, 1964.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea