Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147-153

ON RIGHT(LEFT) DUO PO-SEMIGROUPS

S. K. LEE AND K. Y. PARK

ABSTRACT. We investigate some properties on right (resp. left) due $po\mbox{-semigroups}.$

1. Introduction

Kehayopulu([6]) prove that every ideal of an \mathcal{N} -class of an ordered semigroup does not contain proper prime ideals. As a consequence, each prime ideal of an ordered semigroup is decomposable into its \mathcal{N} -classes.

In this paper, we give the relation between the left(resp. right) filters and the prime left(resp. right) ideals. We define a semilattice congruence \mathcal{N}_l (resp. \mathcal{N}_r) generated by the left(resp. right) filter on a right(resp. left) duo *po*-semigroup and investigate some properties on the right(resp. left) duo *po*-semigroups. Also we prove that every left(resp. right) ideal of \mathcal{N}_l -classresp. \mathcal{N}_r -class) of a right(resp. left) duo *po*-semigroup does not contain the proper prime left(resp. right) ideals. As a consequence, each prime left(resp. right) ideal of a right(resp. left) duo *po*-semigroup is decomposable into its \mathcal{N}_l classes(resp. \mathcal{N}_r -classes).

A *po-semigroup*(: ordered semigroup) is an ordered set S at the same time a semigroup such that $a \leq b \Longrightarrow xa \leq xb$ and $ax \leq bx$ for all $x \in S$.

Let S be a po-semigroup. A nonempty subset A of S is called a *left*(resp. *right*) *ideal* of S if (1) $SA \subseteq A(\text{resp. } SA \subseteq A)$, (2) $a \in A$ and $b \leq a$ for $b \in S \implies b \in A([3,5])$. A is called an *ideal* of S if it is a left and right ideal of S.

Received July 14, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: *po*-semigroup, ideal, left(right) ideal, right(left) duo, prime, prime left(right) ideal, left(right) filter, left(right) congruence, congruence, semilattice congruence.

A po-semigroup S is said to be right(resp. left) duo if every right(resp. left) ideal is a left(resp. right) ideal([4,5]).

A non-empty subset T of a *po*-semigroup S is said to be *prime* if $AB \subseteq T \Longrightarrow A \subseteq T$ or $B \subseteq T$ for subsets A, B of S([8]). Equivalent Definition: For elements a, b in a subset $T \ ab \in T \Rightarrow a \in T$ or $b \in T$. T is called a *prime left*(resp. *right*) *ideal* if T is prime as a left(resp. right) ideal([2]).

A non-empty subsemigroup F of a *po*-semigroup S is called a *left*(resp. *right*) *filter* of S if (1) $ab \in F$ for $a, b \in S \implies b \in F(\text{resp. } a \in F)$, (2) $a \in F, a \leq c$ for $c \in S \implies c \in F([9])$. A subsemigroup F of S is called a *filter* of S if F is a left and right filter ([2,4,5]).

An equivalence relation σ on S is called a *left congruence*(resp. *right congruence*) on S if $(a, b) \in \sigma \implies (ac, bc) \in \sigma$ (resp. $(ca, cb) \in \sigma$) for all $c \in S$. An equivalence relation σ on S is called a *congruence* it is a left and right congruence. A relation σ is called a *semilattice congruence* on S if σ is a congruence such that $(x^2, x) \in \sigma$ and $(xy, yx) \in \sigma([1,2,4])$.

Notation. For a semilattice congruence σ , $(z)_{\sigma}$ is a class of the semilattice congruence σ containing an element z in a *po*-semigroup S.

2. Main Results.

LEMMA ([9]). Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:

- 1) F is a left(resp. right) filter of S.
- 2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime left(resp. right) ideal of S.

From Lemma, we get the following corollary.

COROLLARY 1([2]). Let S be a po-semigroup and F a nonempty subset of S. The following are equivalent:

- 1) F is a filter of S.
- 2) $S \setminus F = \emptyset$ or $S \setminus F$ is a prime ideal of S.

PROPOSITION 1. A po-semigroup S does not contain proper left(resp. right) filters if and only if S does not contain proper prime left(resp. right) ideals.

Proof. ⇒ . Assume that S contains a proper prime left ideal L of S. Then $\emptyset \neq S \setminus L \subset S$. Since $S \setminus (S \setminus L) = L$, we note that $S \setminus (S \setminus L)$

is a prime left ideal of S. By Lemma 1, $S \setminus L$ is a proper left filter of S. It is impossible. Hence S does not contain proper prime left ideals. \Leftarrow . Suppose that F is a proper left filter of S. Then $S \setminus F \neq \emptyset$. By Lemma 1, $S \setminus F$ is a proper prime left ideal of S. It is impossible. Hence S does not contain proper prime left filters.

By Proposition 1, we have the following corollary.

COROLLARY 2([6, Remark 2]). A po-semigroup S does not contain proper filters if and only if S does not contain proper prime ideals.

Now we define a relation " \mathcal{N}_l " on a *po*-semigroup S as follows:

$$\mathcal{N}_l := \{(x, y) | N_l(x) = N_l(y)\}, \quad \mathcal{N}_r := \{(x, y) | N_r(x) = N_r(y)\}$$

where $N_l(x)$ (resp. $N_r(x)$) is the left (resp. right) filter of S generated by $x \in S$.

PROPOSITION 2. \mathcal{N}_l (resp. \mathcal{N}_r) is a semilattice congruence on a right(resp. left) duo po-semigroup S.

Proof. It is easy to check that \mathcal{N}_l is an equivalence relation on S.

Let $(x, y) \in \mathcal{N}_l$. Then $N_l(x) = N_l(y)$. Since $xz \in N_l(xz)$ for all $z \in S$ and $N_l(xz)$ is a left filter, we get $x \in N_l(xz)$ and $z \in N_l(xz)$. Thus $N_l(x) \subseteq N_l(xz)$ and so $y \in N_l(y) = N_l(x) \subseteq N_l(xz)$. Since $y, z \in N_l(xz)$ and $N_l(xz)$ is a subsemigroup of S, we get $yz \in N_l(xz)$. Therefore $N_l(yz) \subseteq N_l(xz)$. By symmetry, we get $N_l(xz) \subseteq N_l(yz)$. Hence $N_l(xz) = N_l(yz)$. Therefore \mathcal{N}_l is a right congruence.

Now we shall show that $(x^2, x) \in \mathcal{N}_l$. Let $x \in S$. Since $x^2 \in N_l(x^2)$ and $N_l(x^2)$ is a left filter, we get $x \in N_l(x^2)$. Thus $N_l(x) \subseteq N_l(x^2)$. Since $x \in N_l(x)$ and $N_l(x)$ is a subsemigroup of S, we get $x^2 \in N_l(x)$. Hence $N_l(x^2) \subseteq N_l(x)$. Therefore $N_l(x^2) = N_l(x)$, and so $(x^2, x) \in \mathcal{N}_l$.

Next we shall show that $(xy, yx) \in \mathcal{N}_l$. Let $x, y \in S$. Since $xy \in N_l(xy)$ and $N_l(xy)$ is a left filter, we have $x \in N_l(xy)$. Suppose that $y \notin N_l(xy)$. Then $y \in S \setminus N_l(xy)$. Since $S \setminus N_l(xy)$ is a prime right ideal and S is a right duo, $xy \in S(S \setminus N_l(xy)) \subseteq S \setminus N_l(xy)$. It is impossible. Thus $y \in N_l(xy)$. Since $N_l(xy)$ is a filter, $yx \in N_l(xy)$. Thus $N_l(yx) \subseteq N_l(xy)$. By symmetry, $N_l(xy) \subseteq N_l(yx)$. Therefore $N_l(xy) = N_l(yx)$ and so $(xy, yx) \in \mathcal{N}_l$.

Finally, we shall show that \mathcal{N}_l is a left congruence. Let $(x, y) \in \mathcal{N}_l$, and $z \in S$. Then $N_l(zx) = N_l(xz) = N_l(yz) = N_l(zy)$.

Therefore \mathcal{N}_l is a left congruence. It follows that \mathcal{N}_l is a semilattice congruence.

PROPOSITION 3. Let S be a po-semigroup. If F is a left filter of Sand $F \cap (z)_{\mathcal{N}_l} \neq \emptyset$ for $z \in S$, then $(z)_{\mathcal{N}_l} \subseteq F$.

Proof. Assume that F is a left filter of S and $a \in F \cap (z)_{\mathcal{N}_l}$ for $z \in S$. If $y \in (z)_{\mathcal{N}_l}$ then $(y)_{\mathcal{N}_l} = (z)_{\mathcal{N}_l} = (a)_{\mathcal{N}_l}$. Thus $(y, a) \in \mathcal{N}_l$, and so $N_l(y) = N_l(a)$. Since F is a left filter of S and $a \in F$, we have $N_l(a) \subseteq F$. Thus $y \in N_l(y) = N_l(a) \subseteq F$. Hence $(z)_{\mathcal{N}_l} \subseteq F$.

PROPOSITION 4. For a po-semigroup $S, a \leq b$ implies $(a, ba) \in \mathcal{N}_l$ and $(a, ab) \in \mathcal{N}_r$.

Proof. Suppose that $a \leq b$. Since $a \in N_l(a)$ and $N_l(a)$ is a left filter, we get $b \in N_l(a)$. Thus $ba \in N_l(a)$, and so $N_l(ba) \subseteq N_l(a)$. Since $ba \in N_l(ba)$ and $N_l(ba)$ is a left filter, we have $a \in N_l(ba)$. Thus $N_l(a) \subseteq N_l(ba)$. Hence $N_l(a) = N_l(ba)$, and so $(a, ba) \in \mathcal{N}_l$.

By symmetry, we can prove that $(a, ab) \in \mathcal{N}_r$.

PROPOSITION 5. Let S be a right duo po-semigroup. If L is a left ideal of $(z)_{\mathcal{N}_{I}}$ for $z \in S$ then L does not contain proper prime left ideals.

Proof. From Proposition 1, it is sufficient to prove that L does not contain proper left filters (of L). Let F be a left filter of L and $a \in F$. Now we define $T := \{x \in S \mid a^2x \in F\}$. Then T is a nonempty set, since $a^2a = a^3 \in F$.

Now we show that $F = T \cap L$. If $y \in F$, then $a^2y \in F$. Thus $y \in T$. Since F is a left filter of L, $F \subseteq L$. Hence $y \in T \cap L$, and so $F \subseteq T \cap L$. Conversely, if $y \in T \cap L$, then $a^2y \in F$. Since F is a left filter of L, we get $y \in F$. Therefore $F = T \cap L$.

Next we show that T is a left filter of L. If $x \in T$ and $y \in T$, then $a^2x, a^2y \in F$. Since F is a left filter, we have $x, y \in F$. Since $a \in F$, $a^2xy \in F$. Thus $xy \in T$. If $xy \in T$ for $x, y \in L$, then $(a^2x)y = a^2(xy) \in I$ F. Since F is a left filter of L, we get $y \in F$. If $x \in T$ and $x \leq y$ for $y \in L$, then $a^2x \in F$. Since $x \leq y$, we get $a^2x \leq a^2y$. Since F is a left filter, $a^2 y \in F$. Thus $y \in T$. Therefore T is a left filter of L.

We note that $a \in F = T \cap L \subseteq L \subseteq (z)_{\mathcal{N}_l}$, and so $T \cap (z)_{\mathcal{N}_l} \neq \emptyset$. Since T is a left filter of L, we have $(z)_{\mathcal{N}_l} \subseteq T$ by Proposition 3. Thus $L = (z)_{\mathcal{N}_l} \cap L \subseteq T \cap L = F \subseteq L$, and so F = L. Hence L does not contain proper left filters (of L). Therefore by Proposition 1, L does not contain proper prime right ideals.

PROPOSITION 6. Let S be a right duo po-semigroup and L a prime left ideal of S. Then $L = \bigcup \{ (x)_{\mathcal{N}_l} \mid x \in L \}.$

Proof. Let $t \in (x)_{\mathcal{N}_l}$ for some $x \in L$. Since $(x)_{\mathcal{N}_l}$ is a left ideal of $(x)_{\mathcal{N}_l}$, $(x)_{\mathcal{N}_l}$ does not contain proper prime left ideals by Proposition 5. If we prove that $(x)_{\mathcal{N}_l} \cap L$ is a prime left ideal of $(x)_{\mathcal{N}_l}$ then $(x)_{\mathcal{N}_l} \cap L = (x)_{\mathcal{N}_l}$.

We first show that $(x)_{\mathcal{N}_l} \cap L$ is a left ideal of $(x)_{\mathcal{N}_l}$. We note that $(x)_{\mathcal{N}_l} \cap L \neq \emptyset$ since $x \in (x)_{\mathcal{N}_l} \cap L$. And $(x)_{\mathcal{N}_l} ((x)_{\mathcal{N}_l} \cap L) = (x)_{\mathcal{N}_l}^2 \cap (x)_{\mathcal{N}_l} L \subseteq (x)_{\mathcal{N}_l} \cap SL \subseteq (x)_{\mathcal{N}_l} \cap L$. Let $a \in (x)_{\mathcal{N}_l} \cap L$ and $b \leq a$ for $b \in (x)_{\mathcal{N}_l}$. Since L is a left ideal of S, b is contained in L. Thus $b \in (x)_{\mathcal{N}_l} \cap L$. Hence $(x)_{\mathcal{N}_l} \cap L$ is a left ideal of $(x)_{\mathcal{N}_l}$.

Finally, we show that $(x)_{\mathcal{N}_l} \cap L$ is prime in $(x)_{\mathcal{N}_l}$. Let $yz \in (x)_{\mathcal{N}_l} \cap L$ for $y, z \in (x)_{\mathcal{N}_l}$. Since $yz \in L$ and L is a prime left ideal of S, yis contained in L or z is contained in L. Hence $y \in (x)_{\mathcal{N}_l} \cap L$ or $z \in (x)_{\mathcal{N}_l} \cap L$. Therefore $(x)_{\mathcal{N}_l} \cap L$ is a prime left ideal of $(x)_{\mathcal{N}_l}$.

It follows that

$$L \subseteq \bigcup \{ (x)_{\mathcal{N}_l} \mid x \in L = \bigcup \{ (x)_{\mathcal{N}_l} \cap L \mid x \in L \} \subseteq L.$$

Therefore $L = \bigcup \{ (x)_{\mathcal{N}_l} \mid x \in L \}.$

B. y similar methods of Proposition 3, 5 and 6, we have the followings:

(1) If F is a right filter of a po-semigroup S and $F \cap (z)_{\mathcal{N}_r} \neq \emptyset$ for $z \in S$, then $(z)_{\mathcal{N}_r} \subseteq F$.

(2) If R is a right ideal of $(z)_{\mathcal{N}_r}$ of left duo *po*-semigroups then R does not contain proper prime right ideals.

(3) If R is a prime right ideal of left duo *po*-semigroups, then

$$R = \bigcup \{ (x)_{\mathcal{N}_r} | x \in R \}.$$

3. Examples

Now we give an example of a left filter which is not a right filter in *po*-semigroups and an example of a left and right filter in a *po*semigroup.

EXAMPLE 1([7]). Let $S := \{a, b, c, d, e, f\}$ be a *po*-semigroup with Cayley table and Hasse diagram on S as follows:

•	a	b	с	d	e	f	e f
a	b	с	d	d	d	d	· ·
b	с	d	d	d	d	d	
c	d	d	d	d	d	d	
d	d	d	d	d	d	d	
e	e	e	e	e	e	e	
f	f	f	f	f	f	f	$\begin{bmatrix} \bullet & \bullet & \bullet \\ a & b & c \end{bmatrix}$

The set $A := \{e, f\}$ is a left filter, but not a right filter of S. Thus A is not a filter of S.

EXAMPLE 2([8]). Let $S := \{a, b, c, d, e, f\}$ be a *po*-semigroup with Cayley table (Table 2) and Hasse diagram (Figure 2) on S as follows:

•	a	b	с	d	e	f
a	a	b	b	d	e	f
b	b	b	b	b	b	b
c	b	b	b	b	b	b
d	d	b	b	d	e	f
e	e	f	f	e	e	f
f	f	f	f	f	f	f

Table 2

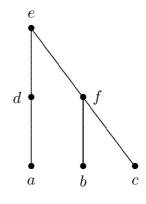


Figure 2

The set $B := \{a, d, e\}$ is a left and right filter of S, and so B is a filter of S.

References

- N. Kehayopulu, On filters generalized in po-semigroups, Math. Japon. 35(4) (1990), 789-796.
- N. Kehayoupulu, Remark on ordered semigroups, Math. Japon. 35(4) (1990), 1061-1063.
- N.Kehayoupulu, On left regular ordered semigroups, Math. Japon. 35(6) (1990), 1057-1060.
- N. Kehayopulu, Right regular and right duo ordered semigroups, Math. Japon. 36(2) (1991), 201-206.
- N. Kehayopulu, Regular duo ordered semigroups, Math. Japon. 37(3) (1992), 535-540.
- N. Kehayopulu, On the decomposition of prime ideals of ordered semigroups into their N-class, Semigroup Forum 47 (1993), 393-395.
- N. Kehayopulu, A note on strongly regular ordered semigroups, Sci. Math. 1(1) (1993), 33-36.
- S. K. Lee and Y. I. Kwon, A generalization of the Theorem of Giri and Wazalwar, Kyungpook Math. J. 37(1) (1997), 109-111.
- S. K. Lee and S. S. Lee, Left(Right) Filters on po-semigroups, Kangweon-Kyungi Math. J. 8(1) (200), 43-45.

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea *E-mail*: sklee@nongae.gsnu.ac.kr