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G-FUZZY EQUIVALENCE RELATIONS
GENERATED BY FUZZY RELATIONS

Inheung Chon

Abstract. We find a G-fuzzy equivalence relation generated by
the union of two G-fuzzy equivalence relations in a set, find a G-
fuzzy equivalence relation generated by a fuzzy relation in a set, and
find sufficient conditions for the composition µ ◦ ν of two G-fuzzy
equivalence relations µ and ν to be a G-fuzzy equivalence relation
generated by µ ∪ ν.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([6]).
Subsequently, Goguen ([1]) and Sanchez ([5]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. Gupta et al.
([2]) proposed a generalized definition of a fuzzy equivalence relation
on a set, which we call G-fuzzy equivalence relation in this paper, and
developed some properties of that relation. The present work has been
started as a continuation of these studies.

In section 2 we develop some basic properties of fuzzy relations,
find a G-fuzzy equivalence relation generated by the union of two G-
fuzzy equivalence relations in a set, find a G-fuzzy equivalence relation
generated by a fuzzy relation in a set, and show that if µ and ν are G-
fuzzy equivalence relations in a set such that µ◦ν = ν ◦µ, inf

t∈X
µ(t, t) ≥

ν(x, y), and inf
t∈X

ν(t, t) ≥ µ(x, y) for all x 6= y ∈ X, then µ ◦ ν is a

G-fuzzy equivalence relation generated by µ ∪ ν.
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2. Fuzzy equivalence relation

Definition 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation µ in a set X
demands µ(x, x) = 1. Gupta et al. ([2]) weakened this definition as
follows.

Definition 2.2. A fuzzy relation µ in a set X is a fuzzy subset of
X ×X. µ is G-reflexive in X if µ(x, x) > 0 and µ(x, y) ≤ inf

t∈X
µ(t, t)

for all x 6= y in X. µ is symmetric in X if µ(x, y) = µ(y, x) for all x, y
in X. The composition λ ◦ µ of two fuzzy relations λ, µ in X is the
fuzzy subset of X ×X defined by

(λ ◦ µ)(x, y) = sup
z∈X

min(λ(x, z), µ(z, y)).

A fuzzy relation µ in X is transitive in X if µ ◦ µ ⊆ µ. A fuzzy
relation µ in X is called G-fuzzy equivalence relation if µ is G-reflexive,
symmetric, and transitive.

Proposition 2.3. Let FX be the set of all fuzzy relations in a set
X. Then FX is a monoid under the operation of composition ◦.

Proof. Clearly ◦ is a binary operation. It is well known that ◦
is associative (see Proposition 2.3 of [3]). Let θ be a fuzzy rela-
tion such that θ(x, x) = 1 and θ(x, y) = 0 if x 6= y. Then (µ ◦
θ)(x, y) = sup

z∈X
min(µ(x, z), θ(z, y)) = µ(x, y). Similarly we may show

(θ ◦ µ)(x, y) = µ(x, y). Hence FX is a monoid. ¤

It is easy to see that a G-fuzzy equivalence relation is an idempotent
element of FX .

Definition 2.4. Let µ be a fuzzy relation in a set X. µ−1 is defined
as a fuzzy relation in X by µ−1(x, y) = µ(y, x).

It is easy to see that (µ ◦ ν)−1 = ν−1 ◦µ−1 for fuzzy relations µ and
ν.
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Proposition 2.5. Let FX be a monoid of all fuzzy relations in X
and let φ : FX → FX be a map defined by φ(µ) = µ−1. Then φ is an
antiautomorphism and φ(µ−1) = (φ(µ))−1 = µ.

Proof. Since (µ−1)−1(x, y) = µ−1(y, x) = µ(x, y) for all x, y ∈ X,
φ(µ−1) = (µ−1)−1 = µ = (φ(µ))−1. Since (µ ◦ ν)−1 = ν−1 ◦ µ−1,
φ(µ ◦ ν) = (µ ◦ ν)−1 = ν−1 ◦ µ−1 = φ(ν) ◦ φ(µ). ¤

Proposition 2.6. Let µ and each νi be fuzzy relations in a set X
for all i ∈ I. Then µ ◦ ( ∪

i∈I
νi) = ∪

i∈I
(µ ◦ νi), ( ∪

i∈I
νi) ◦ µ = ∪

i∈I
(νi ◦ µ),

µ ◦ ( ∩
i∈I

νi) ⊆ ∩
i∈I

(µ ◦ νi), and ( ∩
i∈I

νi) ◦ µ ⊆ ∩
i∈I

(νi ◦ µ).

Proof.

[µ ◦ ( ∪
i∈I

νi)](x, y) = sup
z∈X

min[µ(x, z), ( ∪
i∈I

νi)(z, y)]

= sup
z∈X

min[µ(x, z), sup
i∈I

νi(z, y)]

= sup
z∈X

sup
i∈I

min[µ(x, z), νi(z, y)]

= sup
i∈I

sup
z∈X

min[µ(x, z), νi(z, y)]

= ( ∪
i∈I

µ ◦ νi)(x, y).

Similarly we may prove the remaining things. ¤

Proposition 2.7. Let µ and ν be G-fuzzy equivalence relations in
a set X. Then µ ∩ ν is a G-fuzzy equivalence relation.

Proof. (µ ∩ ν)(x, x) = min(µ(x, x), ν(x, x)) > 0.

inf
t∈X

(µ ∩ ν)(t, t) = inf
t∈X

min(µ(t, t), ν(t, t))

= min ( inf
t∈X

µ(t, t), inf
t∈X

ν(t, t))

≥ min (µ(x, y), ν(x, y)) = (µ ∩ ν)(x, y)

for all x 6= y in X. That is, µ ∩ ν is G-reflesive. (µ ∩ ν)(x, y) =
min(µ(x, y), ν(x, y)) = min(µ(y, x), ν(y, x)) = (µ∩ ν)(y, x). By Propo-
sition 2.6, [(µ ∩ ν) ◦ (µ ∩ ν)] ⊆ [µ ◦ (µ ∩ ν)] ∩ [ν ◦ (µ ∩ ν)] ⊆ [(µ ◦ µ) ∩
(µ ◦ ν)] ∩ [(ν ◦ µ) ∩ (ν ◦ ν)] ⊆ [µ ∩ (µ ◦ ν)] ∩ [(ν ◦ µ) ∩ ν] ⊆ µ ∩ ν. ¤
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It is easy to see that even though µ and ν are G-fuzzy equivalence
relations, µ ∪ ν is not necessarily a G-fuzzy equivalence relation. We
find a G-fuzzy equivalence relation generated by µ∪ ν in the following
theorem.

Theorem 2.8. Let µ and ν be G-fuzzy equivalence relations in a
set X. The G-fuzzy equivalence relation generated by µ∪ν is ∪∞n=1(µ∪
ν)n = (µ ∪ ν) ∪ [(µ ∪ ν) ◦ (µ ∪ ν)] ∪ . . . .

Proof. Clearly (µ ∪ ν)(x, x) > 0.

inf
t∈X

(µ ∪ ν)(t, t) = inf
t∈X

max(µ(t, t), ν(t, t))

= max ( inf
t∈X

µ(t, t), inf
t∈X

ν(t, t))

≥ max (µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y)

for all x 6= y in X. That is, µ ∪ ν is G-reflexive. [(µ ∪ ν) ◦ (µ ∪
ν)](x, x) = sup

z∈X
min[(µ∪ν)(x, z), (µ∪ν)(z, x)] ≥ min[(µ∪ν)(x, x), (µ∪

ν)(x, x)] > 0. inf
t∈X

[(µ∪ν)◦(µ∪ν)](t, t) = inf
t∈X

sup
z∈X

min[(µ∪ν)(t, z), (µ∪
ν)(z, t)] ≥ inf

t∈X
min[(µ ∪ ν)(t, t), (µ ∪ ν)(t, t)] = inf

t∈X
(µ ∪ ν)(t, t) ≥

sup
z∈X

min[(µ ∪ ν)(x, z), (µ ∪ ν)(z, y)] = ((µ ∪ ν) ◦ (µ ∪ ν))(x, y). That

is, (µ ∪ ν) ◦ (µ ∪ ν) is G-reflexive. Similarly (µ ∪ ν)n is G-reflexive for
n = 3, 4, . . . . inf

t∈X
[∪∞n=1(µ∪ν)n](t, t) = inf

t∈X
sup[(µ∪ν)(t, t), ((µ∪ν)◦(µ∪

ν))(t, t), . . . ] = sup [ inf
t∈X

(µ∪ ν)(t, t), inf
t∈X

((µ∪ ν) ◦ (µ∪ ν))(t, t), . . . ] ≥
sup[(µ ∪ ν)(x, y), ((µ ∪ ν) ◦ (µ ∪ ν))(x, y), . . . ] = [∪∞n=1(µ ∪ ν)n](x, y).
Clearly [∪∞n=1(µ ∪ ν)n](x, x) > 0. Thus ∪∞n=1(µ ∪ ν)n is G-reflexive.
Clearly µ ∪ ν is symmetric. [(µ ∪ ν) ◦ (µ ∪ ν)](x, y) = sup

z∈X
min[(µ ∪

ν)(x, z), (µ∪ν)(z, y)] = sup
z∈X

min[(µ∪ν)(y, z), (µ∪ν)(z, x)] = [(µ∪ν)◦
(µ∪ ν)](y, x). That is, (µ∪ ν) ◦ (µ∪ ν) is symmetric. Similarly we may
show (µ ∪ ν)n is symmetric for n = 3, 4, . . . . [∪∞n=1(µ ∪ ν)n](x, y) =
sup[(µ∪ ν)(x, y), ((µ∪ ν) ◦ (µ∪ ν))(x, y), . . . ] = sup[(µ∪ ν)(y, x), ((µ∪
ν) ◦ (µ∪ ν))(y, x), . . . ] = [∪∞n=1(µ∪ ν)n](y, x). That is, ∪∞n=1(µ∪ ν)n is
symmetric. Let µ∗ = ∪∞n=1(µ∪ ν)n and let µ1 = µ∪ ν. By Proposition
2.6, µ∗ ◦µ∗ = µ∗ ◦ [µ1∪ (µ1 ◦µ1)∪ (µ1 ◦µ1 ◦µ1)∪ . . . ] = [µ∗ ◦µ1]∪ [µ∗ ◦
(µ1 ◦µ1)]∪ [µ∗ ◦ (µ1 ◦µ1 ◦µ1)]∪· · · = [(µ1 ◦µ1)∪ ((µ1 ◦µ1)◦µ1)∪ . . . ]∪
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[(µ1 ◦(µ1 ◦µ1))∪((µ1 ◦µ1)◦(µ1 ◦µ1))∪ . . . ]∪· · · = [(µ1 ◦µ1)∪(µ1 ◦µ1 ◦
µ1)∪ . . . ]∪ [(µ1◦µ1◦µ1)∪ . . . ]∪· · · ⊆ µ∗. That is, µ∗ = ∪∞n=1(µ∪ν)n is
transitive. Hence ∪∞n=1(µ ∪ ν)n is a G-fuzzy equivalence relation. Let
λ be a G-fuzzy equivalence relations in a set X containing µ∪ ν. Then
∪∞n=1(µ∪ν)n ⊆ ∪∞n=1λ

n = λ∪ (λ◦λ)∪ (λ◦λ◦λ)∪· · · ⊆ λ∪λ∪· · · = λ.
That is, ∪∞n=1(µ∪ν)n is contained in every G-fuzzy equivalence relation
in X containing µ ∪ ν. Thus ∪∞n=1(µ ∪ ν)n is a G-fuzzy equivalence
relation generated by µ ∪ ν. ¤

Theorem 2.9. Let µ be a fuzzy relation in a set X. Then G-
fuzzy equivalence relation in X generated by µ is µ∗ = ∪∞n=1µ

n
1 =

µ1 ∪ (µ1 ◦ µ1) ∪ (µ1 ◦ µ1 ◦ µ1) ∪ . . . , where µ1 = µ ∪ µ−1 ∪ θ and θ is
a fuzzy relation in X such that θ(x, x) > 0, θ = θ−1, θ(x, y) ≤ µ(x, y),
and max[µ(x, y), θ(x, y)] ≤ inf

t∈X
θ(t, t) for all x 6= y in X.

Proof. (µ ∪ µ−1 ∪ θ)(x, x) = max[µ(x, x), µ−1(x, x), θ(x, x)] > 0.

inf
t∈X

(µ ∪ µ−1 ∪ θ)(t, t) = inf
t∈X

max[µ(t, t), µ−1(t, t), θ(t, t)]

≥ inf
t∈X

θ(t, t) ≥ max[µ(x, y), µ−1(x, y), θ(x, y)]

= (µ ∪ µ−1 ∪ θ)(x, y).

Thus µ1 = µ ∪ µ−1 ∪ θ is G-reflexive. By the same way as shown in
Theorem 2.8, we may show µ∗ = ∪∞n=1µ

n
1 is G-reflexive.

µ1(x, y) = (µ ∪ µ−1 ∪ θ)(x, y) = max[µ(x, y), µ−1(x, y), θ−1(x, y)]

= max[µ−1(y, x), µ(y, x), θ(y, x)]

= (µ ∪ µ−1 ∪ θ)(y, x) = µ1(y, x).
Thus µ1 is a symmetric. By the same way as shown in Theorem 2.8,
we may show µ∗ = ∪∞n=1µ

n
1 is symmetric and transitive. Hence µ∗

is a G-fuzzy equivalence relation containing µ. Let ν be a G-fuzzy
equivalence relation containing µ. Then µ(x, y) ≤ ν(x, y), µ−1(x, y) =
µ(y, x) ≤ ν(y, x) = ν(x, y), and θ(x, y) ≤ µ(x, y) ≤ ν(x, y). Thus
µ1 = (µ ∪ µ−1 ∪ θ) ⊆ ν. (µ1 ◦ µ1)(x, y) = sup

z∈X
min[µ1(x, z), µ1(z, y)] ≤

sup
z∈X

min[ν(x, z), ν(z, y)] = (ν ◦ ν)(x, y). Since ν is transitive, µ1 ◦µ1 ⊆
ν ◦ ν ⊆ ν. Similarly we may show µn

1 ⊆ ν for n = 3, . . . . Thus
µ∗ = µ1 ∪ (µ1 ◦ µ1) ∪ (µ1 ◦ µ1 ◦ µ1) · · · ⊆ ν. ¤
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Theorem 2.10. Let µ and ν be G-fuzzy equivalence relations in a
set X such that inf

t∈X
µ(t, t) ≥ ν(x, y) and inf

t∈X
ν(t, t) ≥ µ(x, y) for all

x 6= y ∈ X. If µ◦ν = ν ◦µ, then µ◦ ν is a G-fuzzy equivalence relation
in X generated by µ ∪ ν.

Proof.

(µ ◦ ν)(x, x) = sup
z∈X

min[µ(x, z), ν(z, x)]

≥ min(µ(x, x), ν(x, x)) > 0.

Since inf
t∈X

µ(t, t) ≥ ν(x, y) and inf
t∈X

ν(t, t) ≥ µ(x, y) for all x 6= y ∈ X,

inf
t∈X

(µ ◦ ν)(t, t) = inf
t∈X

sup
z∈X

min[µ(t, z), ν(z, t)]

≥ inf
t∈X

min[µ(t, t), ν(t, t)] ≥ min[µ(x, z), ν(z, y)]

for all z ∈ X. Thus inf
t∈X

(µ ◦ ν)(t, t) ≥ sup
z∈X

min[µ(x, z), ν(z, y)] =

(µ ◦ ν)(x, y). That is, µ ◦ ν is G-reflexive. Since µ and ν are sym-
metric, (µ ◦ ν)−1 = ν−1 ◦ µ−1 = ν ◦ µ = µ ◦ ν. Thus µ ◦ ν is
symmetric. Since µ and ν are transitive and the operation ◦ is as-
sociative, (µ ◦ ν) ◦ (µ ◦ ν) = µ ◦ (ν ◦ µ) ◦ ν = µ ◦ (µ ◦ ν) ◦ ν =
(µ ◦ µ) ◦ (ν ◦ ν) ⊆ µ ◦ ν. Hence µ ◦ ν is a G-fuzzy equivalence rela-
tion. Since ν(y, y) ≥ µ(x, y), (µ ◦ ν)(x, y) = sup

z∈X
min[µ(x, z), ν(z, y)] ≥

min(µ(x, y), ν(y, y)) = µ(x, y). Since µ(x, x) ≥ ν(x, y), (µ ◦ ν)(x, y) =
sup
z∈X

min[µ(x, z), ν(z, y)] ≥ min(µ(x, x), ν(x, y)) = ν(x, y). Thus (µ ◦
ν)(x, y) ≥ max(µ(x, y), ν(x, y)) = (µ ∪ ν)(x, y). That is, µ ∪ ν ⊆ µ ◦ ν.
Let λ be a G-fuzzy equivalence relation in X containing µ ∪ ν. Since
λ is transitive, µ ◦ ν ⊆ (µ ∪ ν) ◦ (µ ∪ ν) ⊆ λ ◦ λ ⊆ λ. Thus µ ◦ ν is a
G-fuzzy equivalence relation generated by µ ∪ ν. ¤
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