KT-1 비행조종장치 복합재 조종봉 개발

特

한국기계연구원

- 공정연구부 책임연구원
- 관심분야 : 복합재료 성형

輯

E-mail : lsk6167@kmail.kimm.re.kr

권 진 회

- 경상대학교
- 항공기계공학부 교수
- 관심분야 : 복합재료 구조해석
- E-mail : jhkwon@nongae.gsnu.ac.kr

- E-mail : kskim@dacc21.com
- 양 승 운 (주)데크 • (주)데크 기술연구소 차장 • 관심분야 : 복합재료 구조설계
- E-mail : yangsu@dacc21.com

고강도, 고강성인 복합재료는 항공우주 비행체 를 비롯하여 중량감소가 필수적인 구조물에의 이용에 적합하며, 복합재료 사용량도 계속 증가 되고 있다. 높은 무게비 강도와 강성도는 물론, 설계 유연성 및 여러 가지 우수한 물리적, 화학 적 특성을 지닌 섬유강화 복합재료는 기존의 항 공기용 재료를 대체하고 있을 뿐만 아니라, 신뢰 성에 관련된 연구가 진전을 보임에 따라 2차구 조물(secondary structure) 위주에서 높은 하중 을 지지하는 1차구조물(primary structure)로 확대되고 있으며, 종래에는 상상과 설계로만 머 물렀던 비행체가 실제로 제작되어 성공적인 비 행이 실현되고 있다.

항공기용 복합재료 기술은 소규모 기술진으로 국제 수준의 연구 개발이 가능한 고부가가치의 기술집약적 분야로서 한국적 산업 여건에 적합 하다고 할 수 있다. 항공기 구조분야에서는 "경 량화 설계기술", "구조안전성 입증기술" 및 "저 비용 생산 기술" 등의 3가지 요소기술이 유기적 으로 결합되어야 만이 복합재 실용화라는 소기 의 목적을 달성할 수 있다. 특히, 튼튼한 이론적 배경 위에서 실제적인 개발 경험이 접목되어야 만이 복합재 요소기술의 유기적인 결합이 성취 될 수 있다. 즉, 복합재료 분야에서의 기술개발 을 단순한 개별기술 개발이 아니라 개별기술의 유기적인 결합을 통한 실용화 기술 개발이 당면 한 목표라 할 수 있다.

복합재 실용화의 최종적인 목표는 항공기 전 체의 구조물이지만, 국내산업 여건상 항공기 전 체 구조물을 실용화 대상으로 확보하기에 어려 운 점이 있으므로 핵심부품 수준에서 실용화 목 표를 설정하는 것이 현실적인 접근방법이라 판 단된다.

따라서 본 소고에서는 한국형 기본훈련기(KT -1) 비행조종장치 조종봉(control rod)을 탄소섬 유강화 복합재를 사용하여 개발한 과정을 서술 하고자 한다. 조종봉은 그림 1과 같이 승강타 페달(rudder pedal) 및 조종 스틱(control stick) 등의 조종장치에 연결되어 승강타, 에일러론 및 방향타 등의 조종면을 구동시킨다. 조종봉의 파 괴는 곧바로 항공기 전체의 조종 불능 상태와 직결되므로, 이 부품은 항공기의 1차 구조물로 분류된다. 복합재 조종봉의 국산화 개발은 설계 개발시험, 구조설계, 구조해석, 시제제작 및 품 질인증시험을 포함한다. 조종봉 특성상, 구조적 안전성은 조종봉 개발에 있어서 최우선적으로 고려되었다.

그림 1. 조종봉 lay-out

2. 조종봉의 개요

KT-1 비행조종장치 복합재 조종봉의 기본적인 형상은 그림 2와 같다. 몸체 부위는 직경이28mm 및 32mm인 튜브 형상이다. 끝단 조인트는 두 가지 종류가 있는데, 그림 2에서 왼쪽이

가변형 조인트이고, 오른쪽이 고정형 조인트이 다. 이들 조인트는 볼트를 통해 구동용 벨 크랭 크의 핀-베어링 조인트와 연결된다. 고정형 조 인트는 몸체와 일체형으로 되어 있고, hole에는 부시가 삽입되어 있다. 가변형 조인트는 끝단에 삽입된 인서트의 나사를 이용하여 길이를 조절 할 수 있는 기능이 있다. 모든 하중이 핀-베어 링 조인트를 통해서 전달되므로 조종봉은 길이 방향으로 순수 인장하중 및 압축하중 만을 받는 구조물이다.

그림 2. KT-1 조종봉 형상

3. 조종봉의 국산화 절차 및 개발 과정

조종봉의 소요 제기에서부터 초도 양산에 까 지 전체적인 국산화 절차를 그림 3에 요약하여 나타내었으며, 국산화 개발 과정을 표 1에 정리 하였다.

4. 개발 내용

4.1 개발요구조건

조종장치의 작동하중은 일련의 조종봉에 인장 및 압축하중의 형태로 전달되어 최종적으로 조 종면을 구동시킨다. 기본훈련기의 29개 조종봉

特 輯

45

그림 3. 조종봉 국산화 절차

표 1. 국산화 개발 과정

	항 목	개발 내용	담 당
개발요구조건		KT-1 ROC (하중조건, 운용조건, 체계 Interface) FAR 23, 원제작사 기술자료	국과연 DACC
구조설계		기본설계 상세설계 (제작도면)	DACC
구조해석		응력해석, 좌굴해석, 조인트해석 안전율 산출	국과연 DACC
시제 제작		공정설계 및 시험시제 제작 원자재검사, 공정검사, 비파괴검사	품관소 DACC
품질 인증 시허	기술 시험	정하중시험 환경시험 피로손상시험 물성시험 (기본물성, 조인트)	국과연 DACC
시엄	운용 시험	지상작동시험 비행시험	국과연

중에서 16개 조종봉을 복합재 적용대상으로 선 정하였고, 개발요구조건에서는 이들 조종봉에 대 한 제원 및 설계 제한 하중(DLL), 설계 극한 하 중(DUL)을 정의하였다(표 2). 또한, 조종봉 작동 시 적정한 유격을 유지하기 위하여 조종봉의 길 이 공차를 ±0.4 mm 이내로 제한하였고, 설계하 중에서의 최대변위를 2.0 mm 이하로 제한하였다. 한편, KT-1 개발 요구 조건에 의거하여 피로수명 은 36% 설계하중조건에서 10⁶ cycles로 정의하 였고, 피로한도는 10⁷ cycles로 정의하였다.

4.2 구조설계

기본 재료로는 탄소섬유/에폭시 복합재를 사 용하였다. 조종봉 몸체부위는 일방향 인장 및 압 축 하중을 지탱하므로 일방향 프리프레그를 주 로 적용하였다. 또한 표면손상에 대한 내성을 증 가시키기 위해 최외각층에 ±45° 평직 프리프레 그를 배치하였다. 고정형 조인트의 핀-베어링 연결부위는 조인트강도를 증가시키기 위하여 부 분적으로 평직 프리프레그로 보강하였다. 가변형 조인트는 조종봉의 길이를 조절하기 위해 나사

조종봉	직 경 (mm)	길 이 (mm)	DLL (kgf)	DUL (kgf)	비고
AP1	28	308.9	±412	±619	
AP2	32	1,431.7	±434	±651	
AP3	28	308.9	±412	±619	
APL5	32	1,012.1	±426	±640	
APR5	28	683.0	±426	±640	Aileron control system
AP6L	32	1,148.0	±304	±457	
AP6R	32	1,148.0	±304	±457	
APL7	32	1,042.0	± 538	±807	
APR7	32	1,042.0	± 538	±807	
EP1	32	1,431.7	±434	±651	
EP2	32	1,149.5	±764	±1,146	
EP3	32	1,042.2	± 538	±807	Elevator
EP4	32	1,042.2	± 538	±807	control system
EP5	32	802.5	±540	±811	
EP6	32	1,266.7	±516	±774	
RP1	32	564.4	±548	±823	Rudder control system

표 2. 조종봉 형상조건 및 하중조건

그림 4. 조종봉 형상 (좌측:가변형 조인트, 우측:고정형 조인트)

산을 포함하는 연결부시를 사용하여 조종봉 몸 체와 포크를 연결하였다. 연결부시는 연결부위에 대한 구조적 신뢰성을 확보하기 위해 접착제의 결합력과 더불어 조인트 부위의 기계적 형상으로 인장 및 압축하중을 담당하도록 설계하였다. 그림 4는 조종봉 및 끝단부위의 형상을 보여준다.

4.3 구조해석

모든 하중이 벨크랭크와 조종봉을 연결하는 핀-베어링 조인트를 통해서 작용하므로, 조종봉 에 작용하는 하중은 중심 축 방향의 순수 인장 하중과 압축하중 뿐이다. 이러한 하중과 관련한 주요 파괴 모드에 대한 해석을 수행하기 위해서 유한요소법을 사용하여 정하중 해석, 좌굴 해석, 조인트 해석을 수행하였으며, 조인트 부위의 파 괴 모드 분석은 설계 개발 시험에서의 재료 강 도를 이용한 접근법을 사용하였다. 해석은 상용 유한요소 프로그램인 NASTRAN을 이용하여 수 행하였다. 그림 5는 고정형 조인트와 가변형 조 인트의 유한요소 모델링의 대표적인 결과를 나 타낸 것이다. 고정형 조인트는 구멍, 플랜지형 부시 및 볼트로 구성되어 있으며, 볼트는 볼-베 어링을 통하여 구동부위와 연결되어 있으므로, 조종봉의 거시적인 거동을 예측하기 위해서 볼 트와 볼-베어링의 결합은 플랜지형 부시 절점을

特 輯

dependent node로 하고 조종봉의 중심축의 절 점을 independent node로 하는 RBE2 요소를 만들어서 모델링 하였다. 가변형 조인트는 인서 트, 포크(steel fork) 및 볼트로 구성되어 있다. 이러한 가변형 끝단의 인서트는 8절점 CHEXA solid 요소로 모델링 하였고, 포크는 CBAR 요 소로 모델링 하였다. 그리고 포크와 인서트의 연 결은 RBE2 요소를 사용하였다.

경계조건은 강체운동을 막기 위해 한쪽 끝단 절점의 변위(x, y, z)와 축 방향 회전(Θ_x)을 구 속하고, 다른 한쪽 끝단의 절점은 조종봉의 중심 축을 따라서만 변화할 수 있도록 축방향 외의 변위(y, z)와 축 방향의 회전(Θ_x)을 구속하였다. 하중은 축 방향 변위가 구속되지 않은 끝단의 절점에 표2와 같은 각 조종봉의 설계극한하중 (DUL)을 부가하였다.

그림 5. 대표적인 유한요소 모델링

각 조종봉에 대한 설계극한하중에서의 정하중 해석 결과를 표 3에 나타내었다. 해석결과 최대 변위 및 몸체 부위의 최대 변형률은 설계극한하 중이 가장 큰 EP2 조종봉에서 나타났으며, 최대 변위는 0.72mm이며, 몸체 부위의 최대 변형률 은 572με이다. 여기서, 최대 변위는 실제 조종 봉 구조물에서 발생할 수 있는 베어링 및 조인 트 부위의 유격은 배제된 값이다. 또한, 조종봉 몸체 부위의 설계극한하중에서의 최대 변형률이 572με 이므로, 설계기준에서 제시한 최대 변형 률 3,600με 이하 조건과 비교해 볼 때 조종봉은 몸체 부위의 인장 및 압축 파괴로부터 충분히 안전함을 알 수 있다.

복합재 조종봉의 좌굴 해석 결과를 표 4에 정 리하였다. 조종봉 몸체 부위가 끝단 부위에 비해 충분히 길지 않은 AP1/AP3 조종봉 및 APR5 조종봉, 그리고 RP1 조종봉은 고정형 끝단 부위 에서 국부적인 좌굴이 발생했으며, 나머지 조종 봉들은 모두 몸체 부위에서 거시적인 좌굴이 발 생하였다. 이러한 국부 좌굴과 거시 좌굴 모드에 대한 대표적인 모드 형상은 그림 6과 같다. 구 조해석 결과를 개발시험결과와 비교해 볼 때, 서 로 매우 밀접한 상관성이 나타났다. 표 5 에서 알 수 있듯이 상온 조건에서의 해석과 시험결과 좌굴하중이 서로 1.7% 이내의 오차를 보였으며, 또한 서로 동일한 좌굴모드를 보였다.

조종봉 구조해석 및 개발시험 결과로부터, 조 인트 조종봉에 대하여 다음과 같이 결론을 내릴 수 있다.

- 좌굴모드 및 좌굴강도에 있어서, 고온 다습 조건에서의 구조시험과 구조해석 결과가 매 우 밀접한 상관성을 보이므로, 구조해석을 통 해 구조시험의 좌굴하중 예측이 가능하다.
- 2) 구조해석 결과, 고온 다습 조건과 상온 조건 에서의 좌굴모드가 일치하므로, 환경영향으 로 인한 강성저하가 적절하게 보상된다면, 상온 조건에서의 구조시험을 통해 고온 다 습 조건에서의 좌굴하중 예측이 가능하고, 이의 역도 가능하다.

설계개발시험에서 고정형 조인트 부위의 조인 트 강도 시험 결과는 표 6과 같다. 모든 조종봉

	± 변위	4(mm)	± 변형률(με)		
266 TT	상온	고온 다습	상온	고온 다습	
AP1/AP3	0.14	0.15	349	376	
AP2/EP1	0.49	0.53	325	350	
APL5	0.39	0.42	394	424	
APR5	0.24	0.21	352	379	
APL6/APR6	0.34	0.36	281	302	
APL7/APR7	0.54	0.58	496	534	
EP2	0.66	0.72	572	516	
EP3/EP4	0.54	0.58	496	534	
EP5	0.42	0.45	499	537	
EP6	0.59	0.63	476	512	
RP1	0.27	0.29	507	532	

표 3. 복합재 조종봉의 DUL에서의 최대 변위 및 최대 변형률 (조종봉 몸체)

표 4. 복합재 조종봉의 좌굴 해석 결과

그ㅂ	DUL	상온		고온 다습		н л
TE	(kgf)	Pcr(kgf)	M.S.	Pcr(kgf)	M.S.	비포
AP1/AP3	619	3,742	5.05	3,564	4.76	End Fork 좌굴
AP2/EP1	651	1,022	0.57	950	0.46	Dody 지구
APL5	641	1,608	1.51	1,498	1.34	BOOY 좌물
APR5	641	2,693	3.20	2,533	2.95	End Fork 좌굴
APL6/APR6	457	1,266	1.77	1,177	1.58	
APL7/APR7	807	1,511	0.87	1,405	0.74	
EP2	1146	1,552	0.35	1,434	0.25	Pody 지구
EP3/EP4	807	1,505	0.87	1,400	0.74	Douy 파질
EP5	811	2,290	1.82	2,138	1.64	
EP6	774	1,060	0.37	986	0.27	
RP1	823	3,486	3.23	3,304	3.01	End Fork 좌굴

표 5. 조종봉의 좌굴 하중에 대한 시험/해석 결과 비교

대상	환경조건	시험결과 (kgf)	해석결과 (kgf)	차이(%)	비고
EP2	RTD	-1,452	-1,434	1.26	정하중 시험결과
EP6	RTD	-1,042	-1,060	1.70	ű

의 고정형 조인트 부위의 형상 및 하중 부가 방 수 있다. 향이 동일하므로, 고온 다습 조건에 대한 모든 인장과 압축하중에 대해서 수행된 유한요소 해 조종봉의 조인트 안전율을 표 7과 같이 산출할 석의 대표적인 해석 결과를 그림 7에 나타내었다.

特 輯

49

그림 6. 좌굴해석 결과

그림 7. 조인트 응력해석의 대표적 결과

표 6. 복합재 조종봉의 고정형 조인트 강도 (설계개발시험결과)

구 분	DUL (kgf)	P _{br} (kgf)	비고
조인트 시험 시편	1,146	1854	조인트강도 시편 10개 시험 ETW 조건, B-Basis 값

해석결과를 요약하여 정리하면, 고온 다습 조건 에서와 상온 조건에서의 조인트 부위의 유효변 형률 분포는 거의 동일하며, 이를 통해서 상온 조건과 고온 다습 조건에서의 조인트 파괴모드가 일치함을 알 수 있었다. 유한요소해석 결과로부 터 형상 변화가 있는 다른 부위보다 hole 주변이 변형률이 가장 크기 때문에 파괴는 조인트 hole 부위에서 가장 먼저 발생함을 알 수 있었고, hole 주위를 제외하고는 절대적인 변형률 수준 이 1,000µɛ 이내의 작은 값임을 알 수 있었다. 또한, 유한요소해석 결과로부터 조인트 부위가 압축보다는 인장에서 더 취약함을 알 수 있었다. 구조시험에서도 압축하중에 대해서는 EP2 조 종봉이 좌굴이 발생하기 전까지 조인트 부위의 파괴는 발생하지 않았으므로, 고정형 조인트 부 위의 조인트 안전율은 인장하중에 대해서 산출 하였다.

EP2 조종봉 조인트 구조해석 결과로부터, 고 정형 조인트에 대하여 다음과 같이 결론을 내릴 수 있다.

 구조해석 결과, 고온다습 조건과 상온 조건 에서의 조인트 파손모드가 일치하므로, 환 경영향으로 인한 강도저하가 적절하게 보 상된다면, 상온 조건에서의 조인트시험을 통해 고온 다습 조건에서의 조인트강도 예 측이 가능하고, 이의 역도 가능하다.

4.4 시제 제조

조종봉 시험용 시제는 오토클레이브 경화공정 을 사용하여 제조하였다. 조종봉의 양쪽 끝이 몸 통보다 좁기 때문에, 탈형문제를 해결하기 위하 여 볼록치구(male mold)와 오목치구(female mold)를 사용한 2단계 공정을 거쳐 적층하였고, 연결부시는 조종봉 몸체에 미리 장착하여 동시 성형 하였다. 조종봉은 오토클레이브에서 250 下의 온도와 40 psi의 압력으로 6시간 동안 경 화과정을 거쳤다. 그림 8은 제조 완료된 조종봉 의 외형 사진을 나타낸 것이다. 제조가 완료된 복합재 조종봉은 육안검사, 음향검사 및 초음파 검사 등의 비파괴 검사 방법을 적용하여 제조 결함을 검출하였다.

機械와 材料 15권 1호 (2003. 春)

4.5 품질인증시험

조종봉은 환경조건 및 손상조건(표면긁힘, 층 간분리, 충격손상)이 포함된 정하중시험과 피로-손상허용시험을 수행하여 구조적 안전성을 입 증하였다. 피로-손상시험에서는 시험 초기에 미 감지손상 및 감지손상을 인위적으로 시편에 삽 입한 후, 피로하중을 적용하여 미감지손상의 발 생 및 진전에 대한 피로안전성과 감지손상에 대 한 손상허용성을 동시에 고찰하였다. 또한, 환

<u> </u>	DUL	DUL*1.15	고온 다습		
T T	(kgf)	(Fitting Factor)	Pbr(kgf)	안전율	
AP1/AP3	619	711.5		1.61	
AP2/EP1	651	749.1		1.47	
APL5	641	736.6		1.52	
APR5	641	736.6		1.52	
APL6/APR6	457	525.3		2.53	
APL7/APR7	807	927.9	1,854	1.00	
EP2	1,146	1,318		0.41	
EP3/EP4	807	927.9		1.00	
EP5	811	932.7		0.99	
EP6	774	889.9		1.08	
RP1	823	946.8		0.96	

표 7. 복합재 조종봉의 고정형 조인트 강도

표 8. 조종봉 구조시험 결과 요약

시험항목	시험대상	설계하중 (kgf)	시험결과 (kgf)	비고
저희즈 사형	조종봉 EP2	-1,146	-1,452	지그가드시히 거고
상하중 시험	조종봉 EP6	-774	-1,042	과물경도시엄 실과
피고하도 시청	ㅈ조보 ED6	-774	-1,036	좌굴강도시험 결과
피도안도 시엄	소공동 EP6	+774	+2,144	조인트강도시험 결과

표 9. 조종봉 파괴모드 별 안전율 결과 요약

- н		설계하중 (kgf)		시험결과		
ず そ	파괴모드	DUL	환경계수	(kgf)	비꼬	
지원조 구강	좌굴강도 (EP2)	-1,146	1.05	-1,452	정하중시험 결과	
장아궁 조건	좌굴강도 (EP6)	-774	1.05	-1,042	(EP2/EP6 조종봉)	
	피로한도 Cycle	10^7 with ±275 kgf		No Failure	피고하드시청 경기	
피로한도 조건	좌굴강도 (EP6)	-774	1.05	-1,036	피도안도지엄 결과 (EP6 조종봉)	
	조인트 강도	+1,146	1.56	+2,144		

特 輯

경을 반영하기 위해 환경 챔버를 시험기에 부착 하였다. 피로시험에서는 ROC에서의 피로수명조 건을 반영하여 10⁶ 및 10⁷ cycle 의 피로하중을 부과하였다. 표 8은 KT-1 비행조종장치 복합재 조종봉 구조해석 결과, 안전율이 가장 작게 예측 된 조종봉 EP2 및 EP6에 대한 구조시험을 수행 한 대표적인 결과를 정리한 것이다. 한편, 구조 시험 결과를 이용하여 각 파괴모드별 안전율을 표 9에 정리하였는데, 모든 파괴모드에서 안전 율이 0.0 이상임을 입증하였다.

4.6 지상 작동 시험 및 비행시험

조종봉의 지상작동시험을 수행하기 전에 우선 수락시험(120% DLL 인장/압축시험)을 수행하 여 구조적 안정성을 확인한 후 실제 항공기에 장착하여 지상작동시험을 수행하였다. 그림 9는 지상 작동 시험 장면을 나타낸 것이며, 그림 10 은 지상 작동 시험의 대표적인 결과를 나타낸 것이다.

국산 개발된 복합재 조종봉을 장착한후 19회 (총비행시간 : 약 23 시간)비행을 수행하였다. (그림 11). 비행 시험 결과, 비행도중 기능상, 구조상 특이사항이 발생하지 않았으며, 이를 비 행조종사들이 확인하였다. 따라서 수입제품을 대 체하기 위하여 국산화된 조종봉은 항공기용으로 적합한 것으로 판단된다.

그림 9. 지상 작동 시험 장면

그림 10. Aileron System 강성시험 결과

그림 11. 비행시험 장면

5. 결 론

국방부의 부품국산화 절차에 의거하여 기본훈 련기 비행조종장치 조종봉을 국산화 개발한 결 론을 요약하면 다음과 같다.

- 모든 설계요구조건을 만족시키며 경쟁제품 (수입품) 대비 우수한 구조적 특성을 갖는 복합재 비행 조종봉을 개발하였다.
- 복합재 조종봉의 원소재로는 비강성/비강도 가 탁월한 carbon/epoxy를 선정하여 구조 성능이 최대한 발휘되도록 적층 설계를 최 적화하였다.
- 3) 국산화된 비행 조종봉은 수입품과 비교하여 10배 이상의 피로수명 및 30 Joule 충격에 너지 손상에 대한 구조안전성을 입증하였

다. 또한, 시험을 통하여 수입품에서는 제공 되지 않았던 모든 파괴모드에 대한 안전율 데이터를 확보하였기에 설계변경 상황에서 의 유연성이 크다.

- 4) 비행 조종봉의 국산화 개발을 통하여 피로손 상허용 설계 및 고강성 설계 등 복합재 부품 설계 핵심기술을 확보할 수 있었으며, 항공 기 국제 인증기준(FAR 23)에 준하는 인증과 정을 거침으로써 국내 항공기 복합재 부품 품질인증기술을 한 단계 높일 수 있었다.
- 5) 국산화 개발된 비행 조종봉은 현재 국내용 기본훈련기와 수출훈련기에 적용되고 있으
 며, 향후 400여대의 훈련기를 수출할 계획 이다.