The Effects of the Statistical Uncertainties in Monte Carlo Photon Dose Calculation for the Radiation Therapy

방사선 치료를 위한 몬테칼로 광자선 선량계산 시 통계적 불확실성 영향 평가

  • Cheong, Kwang-Ho (Dept. of Biomedical Engineering, The Catholic University of Korea) ;
  • Suh, Tae-Suk (Dept. of Biomedical Engineering, The Catholic University of Korea) ;
  • Cho, Byung-Chul (Dept. of Radiation Oncology, Hallym University Sacred Heart Hospital)
  • 정광호 (가톨릭의대 의공학교실) ;
  • 서태석 (가톨릭의대 의공학교실) ;
  • 조병철 (한림성심병원 방사선종양학과)
  • Published : 2004.06.30

Abstract

The Monte Carlo simulation requires very much time to obtain a result of acceptable accuracy. Therefore we should know the optimum number of history not to sacrifice time as well as the accuracy. In this study, we have investigated the effects of statistical uncertainties of the photon dose calculation. BEAMnrc and DOSXYZnrc systems were used for the Monte Carlo dose calculation and the case of mediastinum was simulated. The several dose calculation result from various number of histories had been obtained and analyzed using the criteria of isodose curve comparison, dose volume histogram comparison(DVH) and root mean-square differences(RMSD). Statistical uncertainties were observed most evidently in isodose curve comparison and RMSD while DVHs were less sensitive. The acceptable uncertainties $(\bar{{\Delta}D})$ of the Monte Carlo photon dose calculation for the radiation therapy were estimated within total 9% error or 1% error for over than $D_{max}/2$ voxels or voxels at maximum dose.

몬테칼로 모의실험을 이용하여 방사선 선량을 계산할 경우 원하는 정확도를 얻기 위해서는 계산입자(histories) 수가 많아야 하므로 시간이 오래 걸리게 된다. 그러므로 정확성을 유지할 수 있으면서 시간을 최소화할 수 있는 최적의 계산입자 수를 결정해야 할 필요가 있다. 본 연구에서는 계산입자 수에 따른 통계적 불확실성의 영향을 평가한 후 최적의 계산입자 수 결정을 위한 불확실성의 한계를 제시하고자 하였다. 몬테칼로 코드로는 BEAMnrc와 DOSXYZnrc를 사용하였으며, 모의 흉부 팬텀에 대하여 계산입자 수를 달리 하면서 광자선 선량을 계산한 후 통계적 오차가 적은 벤치마크와 비교하였다. 통계적 오차의 영향을 분석하기 위하여 임상적으로 널리 이용되는 등선량 곡선 비교, DVH, RMSD 방법을 이용하였다. 연구 결과 통계적 오차의 영향은 등산량 곡선 비교와 RMSD 비교에서 크게 나타났으나 DVH에서의 영향은 크지 않은 것으로 나타났다. 방사선치료를 위한 광자선 선량계산을 할 경우 전체 통계적 불확실성 $(\bar{{\Delta}D})$ 9% 또는 $D_{max}/2$ 이상을 갖는 체적소에 대한 통계적 오차 1%, 또는 최대 선량지점에서의 통계적 불확실성 1% 정도가 적정 수준임을 확인할 수 있었다.

Keywords

References

  1. P. Andero, 'Monte Carlo techniques in medical radiation physics', Phys. Med. Bio., 36, 861-920(1991)
  2. C.M. MA, B.A. Faddegon, D.W.O. Rogers and TR Mackie, 'Accurate characterization of Monte Carlo calculation electron beams for radiotherapy', Med. Phys., 24 401-416(1997)
  3. J. Sempau, S.J. Wilderman and A.F. Bielajew, 'DPM : a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planningdose calculations', Phys: Med. BioI., 45, 2263-2291(2000)
  4. P.J. Keall, J.V. Siebers, R. Jeraj and R. Mohan, 'The effect of dose calculation uncertainty on the evaluation of radiotherapy plans', Med. Phys., 27(3) 478-484(2000)
  5. I. Kawrakow and M. Fippel, 'Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC', Phys. Med. Biol,. 45, 2163-2184(2000)
  6. F.M. Buffa and A.E. Nahum, 'Monte Carlo dose calculations and radiobiological modelling : analysis of the effect of the statistical noise of the dose distribution on the probability of tumor control', Phys. Med. Biol., 45, 3009-3023(2000)
  7. F. Salvat, J.M. Fernandez-Varea, J. Sempau, 'PENELOPE, a code system for Monte Carlo simulation of electron and photon transport', PENELOPE user manual, 4-33, Universitat de Baecelona, Barcelona, Spain(2003)
  8. J. Sempau, A. Sanchez-Reyes, F. Salvat, H.O.B. Tahar, S.B. Jiang and J.M FernandezVerea, 'Monte Carlo simulation of electron beams from an accelerator head using PENELOPE', Phys. Med. Biol., 46, 1163-1186(2001)
  9. B.R.B. Walters, I. Kawrakow and D.W.O. Rogers, 'History by history statistical estimators in the BEAM code system', NRCC Report PIRS-0791,National Research Council of Canada, Ottawa, Canada(2002)
  10. I. Kawrakow and D.W.O. Rogers, 'The EGSnrc code system : Monte Carlo simulation of electron and photon transport', Technical report PIRS-701, National Research Council of Canada, Ottawa, Canada(2000)
  11. C.M. Ma, J.S. Li, T. Pawlicki, S.B. Jiang, J. Deng, M.C.Lee, T. Koumrian, M. Luxton and S. Brain, 'A Monte Carlo dose calculation tool for radiotherapy treatment planning' Phys. Med: Biol., 47, 1671-1689(2002)
  12. I. Kawrakow and M. Fippel, 'VMC++, a fast MC algorithm for radiation treatment planning', Proceedings of The Use of Computers in Radiotherapy, Xlllth Int'1 Conf., Heidelberg, 126-128, SpringerVerlag, Heidelberg(2000)
  13. D.W.O. Rogers and A.F. Bielajew, 'Monte Carlo techniques of electron and photon transport for radiation dosimetry', in:The dosimetry of ionizing radiation vol.3, K.R. Kase, B.E. Barngard and F.H. Attix, 427-539, Academic Press, New York(1990)
  14. D.W.O. Rogers and R. Mohan, 'Questions for comparison of clinical Monte Carlo codes', Proceedings of The Use of Computers in Radiotherapy, XIIIth Int'l Conf., Heidelberg, 120-122, Springer-Verlag, Heidelberg(2000)
  15. DW.O. Rogers, B.A.F addegon, G,X, Ding, C.M. Ma. and J.We, 'BEAM:A Monte Carlo code to simulate radiotherapy treatment units', Med. Phys., 22, 503-524(1995) https://doi.org/10.1118/1.597552
  16. S.B. Jiang, T. Pawlicki and C.M. Ma, 'Removing the effect of statistical uncertainty on dose-volume histogram from Monte Carlo dose calculations', Phys. Med. Biol., 45, 2151-216l(2000)
  17. I. Kawrakow, 'On the de-noising of Monte Carlo calculated dose distributions', Phys. Med. Biol., 47, 3087-3103(2002) https://doi.org/10.1088/0031-9155/47/17/304