DOI QR코드

DOI QR Code

연속지진하중에 의한 철근콘크리트 교량 교각의 응답해석

Response Analysis of RC Bridge Piers due In Multiple Earthquakes

  • 이도형 (배재대학교 토목환경공학과) ;
  • 전종수 ((주)삼보기술단 기술연구소) ;
  • 박대효 (한양대학교 토목공학과)
  • Lee Do-Hyung (Dept. of Civil and Geotechnical Engineering, Paichai University) ;
  • Jeon Jong-Su (Research and Development Institute, Sambo Engineering Co., Ltd) ;
  • Park Tae-Hyo (Dept. of Civil Engineering, Hanyang University)
  • 발행 : 2004.06.01

초록

본 논문에서는 단일 및 연속지진하중을 받는 철근콘크리트 교량 교각의 누적손상의 영향을 조사하였다. 이 목적을 위하여 세 쌍의 입력지진파들이 선택되었고 이중 한 쌍은 3개월 간격으로 같은 지역에서 기록된 연속지진에 의한 입력지진파들을 나타낸다. 해석결과 교각들은 연속지진하중에 의하여 많은 수의 비탄성 반복주기를 경험하고 변위 연성요구도가 증가되었다. 따라서 교각들은 강성의 감소로 인한 손상이 클 것으로 사료된다. 뿐만 아니라 교각의 변위 연성요구도의 비교분석 결과, 교각의 비탄성 지진응답은 작용된 입력지진파들의 특성에 크게 영향을 받는다는 것을 알 수 있었다. 본 연구에서는 또한 연속지진하중이 전단을 고려한 응답에 미치는 영향을 조사하였다. 전단을 고려한 경우와 고려하지 않은 경우의 비교해석 결과, 연속지진하중 하에서 전단을 고려한 경우 교각의 강성저하와 그에 따른 에너지 소산능력 감소의 정도가 심각한 것을 알 수 있었다. 따라서 철근콘크리트 교량 교각의 안전성 검토에 연속지진하중의 효과가 고려되어야 할 것으로 사료된다.

In this paper, the effect of cumulative damage for reinforced concrete bridge piers subjected to both single and multiple earthquakes is investigated. For this purpose, selected are three set of accelerograms one of which represents the real successive input ground motions, recorded at the same station with three months time interval. The analytical predictions indicate that piers are in general subjected to a large number of inelastic cycles and increased ductility demand due to multiple earthquakes, and hence more damage in terms of stiffness degradation is expected to occur. In addition, displacement ductility demand demonstrates that inelastic seismic response of piers can significantly be affected by the applied input ground motion characteristics. Also evaluated is the effect of multiple earthquakes on the response with shear. Comparative studies between the cases with and without shear indicate that stiffness degradation and hence reduction in energy dissipation capacity of piers are pronounced due to the multiple earthquakes combined with shear. It is thus concluded that the effect of multiple earthquakes should be taken into account for the stability assessment of reinforced concrete bridge piers.

키워드

참고문헌

  1. Jennings, P.C., 'Engineering Features of the San Fernando Earthquake February 9, 1971,' EERL 71-02, California Institute of Technology, USA, 1971, pp.512
  2. Broderick, B.M., Elnashai, A.S., Ambraseys, N.N., Barr, J.M., Goodfellow, R.G., and Higazy, E.M., 'The Northridge( California) Earthquake of 17 January 1994: Observations, Strong Motion and Correlative Response Analyese,' ESEE Research Report, No.94/4, Imperial College, London, 1994, pp. 1-87
  3. Elnashai, A.S., Bommer, J.J., Baron, C.I., Lee, D.H., and Salama, AL., 'Selected Engineering Seismology and Structural Engineering Studies of the Hyogo-Ken Nambu(Great Hanshin) Earthquake of 17 January 1995,' ESEE Research Report, No.95/2, Imperial College, London, 1995, pp.153
  4. Elnashai, A.S., 'Analysis of the Damage Potential of the Kocaeli (Turkey) Earthquake of 17 August 1999,' Engineering Structures, Vol.22, No.7, 2000, pp.746-754 https://doi.org/10.1016/S0141-0296(99)00104-2
  5. Sucuo$\breve{g}$lu, H., 'Engineering Characteristics of the Near-Field Strong Motions from the 1999 Kocaeli and D$\"{u}$zce Earthquakes in Turkey,' Journal of Seismology, Vol.6, No.3, 2002, pp.347-355 https://doi.org/10.1023/A:1020083308693
  6. Aschheim M. and Black, E., 'Effects of Prior Earthquake Damage on Response of Simple Stiffness-Degrading Structures,' Earthquake Spectra, Vol.15, No.1, 1999, pp.1-23 https://doi.org/10.1193/1.1586026
  7. Elnashai, A.S., Papanikolaou, V., and Lee, D.H., 'ZeusNL-A Program for Inelastic Dynamic Analysis of Structures,' Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, USA, 2001, pp. 135
  8. Newmark, N.M., 'A Method for Computation for Structural Dynamics,' Journal of the Engineering Mechanics Division, ASCE, Vol.85, No.3, 1959, pp.67-94
  9. Hilber, H.M., Hughes, T.J.R., and Taylor, R.L., 'Improved Numerical Dissipation for Time-Integration Algorithms in Structural Dynamics,' Earthquake Engineering and Structural Dynamics, Vol.5, 1977, pp.283-292 https://doi.org/10.1002/eqe.4290050306
  10. Saatcioglu, M and Qzcebe, G., 'Response of Reinforced Concrete Columns to Simulated Seismic Loading,' ACI Structural Journal, Vol.86, No.1, 1989, pp.3-12
  11. Vecchio, F.J. and Collins, M.p., 'The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,' ACI Structural Journal, Vo1.83, No.2, 1986, pp.219-231
  12. Qzcebe, G., and Saatcioglu, M., 'Hysteretic Shear Model for Reinforced Concrete Members,' Journal of Structural Engineering, ASCE, Vol.115, No.1, 1989, pp.132-148 https://doi.org/10.1061/(ASCE)0733-9445(1989)115:1(132)
  13. Lee, D.H., and Elnashai, A.S., 'Seismic Analysis of RC Bridge Columns with Flexure Shear Interaction,' Journal of Structural Engineering, ASCE, Vol.127, No.5, 2001, pp.546-553 https://doi.org/10.1061/(ASCE)0733-9445(2001)127:5(546)
  14. Maruyama, K, Ramirez, H, and Jirsa, J.O., 'Short RC Columns under Bilateral Load Histories,' Journal of Structural Engineering, ASCE, Vol.110, No.1, 1984, pp.120-137 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:1(120)
  15. ACI 318-71, 'Building Code Requirements for Reinforced Concrete,' American Concrete Institute, Detroit, Michigan, USA, 1971, pp. 109-115
  16. Broderick, B.M., and Elnashai, AS., 'Analysis of the Failure of Interstate 10 Freeway Ramp during the Northridge Earthquake of 17 January 1994,' Earthquake Engineering and Structural Dynamics, Vol.24, 1995, pp.189-208 https://doi.org/10.1002/eqe.4290240205
  17. Lee, D.H., and Elnashai, A.S., 'Inelastic Seismic Analysis of RC Bridge Piers Including Flexure-Shear-Axial Interaction,' Structural Engineering and Mechanics, An International Journal, Vol.13, No.3, 2002, pp.241-260