DOI QR코드

DOI QR Code

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT), Catalysis and Reaction Engineering Lab, Department of Chemical Engineering, Korea University) ;
  • Lee, Dong-Wook (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Sang-Kyoon (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Sea, Bong-Kuk (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Youn, Min-Young (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Kwan-Young (Catalysis and Reaction Engineering Lab, Department of Chemical Engineering, Korea University) ;
  • Lee, Kew-Ho (Membrane and Separation Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • Published : 2004.05.20

Abstract

Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.

Keywords

References

  1. De Lange, R. S. A.; Keizer, K.; Hekkink, J. H. A.; Burggraaf, A. J.J. Membr. Sci. 1995, 99, 57. https://doi.org/10.1016/0376-7388(94)00206-E
  2. Tsapatsis, M.; Gavalas, G. J. Membr. Sci. 1994, 87, 281. https://doi.org/10.1016/0376-7388(94)87034-9
  3. Wu, J. C. S.; Sabol, H.; Smith, G. W.; Flowers, D. L.; Liu, P. K. T.J. Membr. Sci. 1994, 96, 227.
  4. Shelekhin, A. B.; Dixon, A. G.; Ma, Y. H. J. Membr. Sci. 1992, 75,233. https://doi.org/10.1016/0376-7388(92)85066-R
  5. Zaspalis, V. T.; Keizer, K.; Ross, J. R. H.; Burrggraaf, A. J. KeyEng. Mater. 1991, 205, 61.
  6. Barbieri, G.; Violante, V.; Di Maio, F. P.; Criscuoli, A.; Drioli, E.Ind. Eng. Chem. Res. 1997, 36, 3369. https://doi.org/10.1021/ie970033w
  7. Ziaka, Z. D.; Minet, R. G.; Tsotsis, T. T. J. Membr. Sci. 1993, 77,221. https://doi.org/10.1016/0376-7388(93)85071-4
  8. Lu, M.; Xiong, G.; Zhao, H.; Cui, W.; Gu, J.; Bauser, H. CatalysisToday 1995, 25, 339. https://doi.org/10.1016/0920-5861(95)00087-V
  9. Salomon, M. A.; Coronas, J.; Menendez, M.; Santamiria, J.Applied Catalysis A. General 2000, 200, 201. https://doi.org/10.1016/S0926-860X(00)00640-2
  10. Gouma, P. I.; Dutta, P. K.; Mills, M. J. NanoStructured Materials1999, 11, 1231. https://doi.org/10.1016/S0965-9773(99)00413-4
  11. Venza, P. A.; Frosta, R. L.; Bartlettb, J. R.; Woolfreyb, J. L.;Kloproggea, J. T. Termochimica Acta 2000, 346, 73. https://doi.org/10.1016/S0040-6031(99)00367-6
  12. Ahonen, P. P.; Richard, O.; Kauppinen, E. I. Materials ResearchBulletin 2001, 36, 2017. https://doi.org/10.1016/S0025-5408(01)00679-1
  13. Suh, D.-J.; Park, T.-J. Chem. Mater. 1996, 8, 509. https://doi.org/10.1021/cm950407g
  14. Shelby, J. E. J. Am. Ceram. Soc. 1972, 55, 195. https://doi.org/10.1111/j.1151-2916.1972.tb11257.x
  15. Anderson, M. A.; Gieselman, M. J.; Xu, Q. J. Membr. Sci. 1988,39, 243. https://doi.org/10.1016/S0376-7388(00)80932-1
  16. Zaspalis, V. T.; Keizer, K.; Van Praag, W.; Van Ommen, J. G.;Ross, J. R. H.; Burggraaf, A. J. Br. Ceram. Proc. 1988, 43, 103.
  17. Traversa, E.; Gnappi, G.; Montenero, A.; Gusmano, G. Sensors &Actuators B 1996, 31, 59. https://doi.org/10.1016/0925-4005(96)80017-7
  18. Brinker and Scherer Sol-Gel Science; Academic Press: 1990; p273.
  19. Sea, B.; Lee, K.-H. Bull. Korean Chem. Soc. 2001, 22, 1400.
  20. Lee, K.-H.; Lee, D.-W.; Lee, Y.-G.; Sea, B. K. Korea Patent 2002-0060554, 2002.
  21. Lee, D.-W.; Lee, Y.-G.; Ihm, S.-K.; Lee, K.-H. Langmuir 2003,Submitted.
  22. So, W.-W. Ph. D. thesis, Korea Advanced Institute Science andTechnology: Korea, 1998.
  23. Gestel, T. V.; Vandecasteele, C.; Buekenhoudt, A.; Dotremont, C.;Luyten, J.; Leysen, R.; Der Bruggen, B. B.; Maes, G. J. Membr. Sci. 2002, 207, 73. https://doi.org/10.1016/S0376-7388(02)00053-4

Cited by

  1. Dual function filtration and catalytic breakdown of organic pollutants in wastewater using ozonation with titania and alumina membranes vol.378, pp.1, 2004, https://doi.org/10.1016/j.memsci.2010.11.045