Polyketide and Sesquiterpenediol Metabolites from a Marine-Derived Fungus

Xifeng Li, Se-Kwon Kim, Jung Sook Kang,[†] Hong Dae Choi,[‡] and Byeng Wha Son^{*}

Department of Chemistry, Pukyong National University, Busan 608-737, Korea [†]College of Dentistry, Pusan National University, Busan 602-739, Korea [‡]Department of Chemistry, Dongeui University, Busan 614-714, Korea Received March 2, 2004

Kcy Words : Marine-derived fungus, Brominated alkenoate, Methyl 2,4-dibromo-5-oxo-2-decenoate, Methyl 2,4-dibromo-5-oxo-3-decenoate, Cyclonerodiol

Marine microorganisms such as bacteria and fungi inhabit virtually any environment in the sea, and they are rich sources of chemically and biologically diverse compounds.^{1,2}

In our search for bioactive compounds in marine microorganisms,³ two new halogenated alkenoates, methyl 2,4dibromo-5-oxo-2-decenoate (1) and methyl 2,4-dibromo-5oxo-3-decenoate (2), and the known sesquiterpenediol, cycloneroidol (3), were isolated from the broth of an unidentified fungus, which was separated from the surface of the marine red alga *Gracillaria verrucosa* collected at Jinha, Ulsan in 2002.

The fungus was cultured (10 L) in a seawater-based medium.⁴ The resulting broth and mycelium were extracted separately to afford crude extracts of 0.7 g and 6.5 g, respectively. The broth extract (EtOAc) was subjected to a combination of column chromatography on silica gel (*n*-hexane/EtOAc) and octadesyl silica (ODS) gel (H₂O/MeOH) to furnish the fractions containing compounds 1 and 2 (20 mg), and compound 3 (25 mg). Further purification of each fraction by HPLC (YMC ODS-A, MeOH-H₂O = 5 : 1) yielded compounds 1 (5.5 mg), 2 (8.0 mg), and 3 (11 mg), respectively.

Compound 2^5 was isolated as a yellow oil which was thought to have a molecular composition of $C_{11}H_{16}$ Br₂O₃ from the high resolution (HR) FABMS and ¹³C NMR data.

Three degree of unsaturation in HRFABMS implied that **2** contained two carbonyls and one double bond. The quasimolecular ions were observed at m/z 355, 357, and 359 with the ratio 1:2:1, indicating that compound **2** has two bromine atoms. The IR spectrum of **2** showed absorptions for ester (1743, 1137 cm⁻¹) and enone (1697, 1265 cm⁻¹) functionality. The UV spectrum also exhibited the presence of an enone chromophore [257 nm (log ε 3.5)].

In the ¹H NMR spectrum, the presence of an ester methyl

proton [δ 3.85 (3H, s, 1-OCH₃)], an olefinic proton [δ 7.43 (1H, d, J = 9.8 Hz, 1I-3)], an allyl proton [5.28 (1H, d, J = 9.8 Hz, H-2)], and *n*-pentyl protons was inferred. Detailed analyses of the ¹H and ¹³C NMR spectra of **2**, including the results from COSY, DEPT, HMQC, and HMBC experiments, revealed signals ascribable to a methyl ester [δ 3.85 (3H, s, 1-OCH₃), 167.5 (C-1), 53.7 (1-OMe)], 1.2,4,4-tetrasubstituted-2-buten-1-one [δ 5.28 (1H, d, J = 9.8 Hz, H-2)], 40.9 (C-2), 135.4 (C-3), 130.4 (C-4), 193.7 (C-5)], and n-pentyl moiety [δ 2.82 (2H, t, J = 7.3 Hz, H₂-6), 1.66 (2H, m, H₂-7), 1.32 (4H, m, H₂-8/9), 0.91 (3H, t, J = 6.6 Hz, H₃-10), 38.8 (C-6), 23.9 (C-7), 31.2 (C-8), 22.4 (C-9), 13.9 (C-10)] (Table 1).

The connection of the functional groups in $\mathbf{2}$, which led to the planar structure, was achieved on the basis of HMQC and HMBC data. Key HMBC correlations from 1-OCH₃ to C-1, from H-2 to C-1, C-3, and C-4, from H-3 to C-1 and C-5, from H-6 to C-5, and from H-7 to C-5 were critical in establishing the planar structure of $\mathbf{2}$.

Two bromines were confirmed to attach to C-2 and C-4 by the HMBC correlations between H-2 and C-1, C-3, and C-4, as well as the characteristic mass fragments of m/z 99 [C₅H₁₁CO]⁺ and 203 [M-CH₃OCOCHBr]⁺.

Compound 16 was obtained as a yellow oil, and HRFABMS

Table 1. ¹H (δ , mult, J) and ¹³C (δ , mult) NMR Data for Methyl 2.4-Dibromo-5-oxo-2-decenoate (1) and Its 3-decenoate (2)^{*a*}

Carbon	1		2	
No.	δ_{H}	δυ	$\delta_{ m H}$	δc
1		161.9 (s)		167.5 (s)
2		120.5 (s)	5.28 (d. 9.8)	40.9 (d)
3	7.63 (d. 9.9)	137.7 (d)	7.43 (d. 9.8)	135.4 (d)
4	5.22 (d. 9.9)	47.4 (d)		130.4 (s)
5		199.9 (s)		193.7 (s)
6	2.85 (dt. 17.3, 7.3)	39.8 (t)	2.82 (t. 7.3)	38.8 (t)
	2.61 (dt. 17.3, 7.3)			
7	1.66 (m)	23.5 (t)	1.66 (m)	23.9 (t)
8	1.32 (m)	31.1 (t)	1.32 (m)	31.2 (t)
9	1.32 (m)	22.3 (t)	1.32 (m)	22.4 (t)
10	0.90 (t. 6.9)	13.9 (q)	0.91 (t. 6.6)	13.9 (q)
1-OMe	3.87 (s)	53.8 (q)	3.85 (s)	53.7 (q)

"Recorded in CDCl3 at 400 MHz (¹H) and 100 MHz (¹³C).

and ¹³C NMR methods established the molecular formula to be C₁₁H₁₆Br₂O₃. The general features of its UV. IR and NMR spectra (Table 1) closely resembled those of compound **2**. except that the coupling pattern of NMR signal assigned to the methylene (H₂-6) was changed from triplet [δ 2.82 (2H. t, *J* = 7.3 Hz. H₂-6)] for **2** to doublet of triplet [δ 2.61 (1H, dt. *J* = 17.3, 7.3 Hz, H_a-6) and 2.85 (1H. dt. *J* = 17.3, 7.3 Hz. H_b-6)] for **1** (Table 1).

Detailed analyses of the ¹H and ¹³C NMR spectra of 1. including the results from DEPT. COSY, HMQC, and HMBC experiments. suggested that the metabolite 1 is the positional isomer of double bond of compound 2.

The location of double bond of the metabolite 1 was determined by the HMBC data, in which diagnostic correlations from H-4 to C-2. C-3. and C-5. and from H-6 to C-5, C-7. and C-8 showed the C2-C3 double bond in 1.

On the basis of all of the foregoing evidence, the structures of compounds 1 and 2 were determined as methyl 2.4-dibromo-5-oxo-2-decenoate and methyl 2.4-dibromo-5-oxo-3-decenoate, respectively.

Cyclonerediol (3).⁷ a sesquiterpenediol, was first reported as a metabolite of the fungus *Trichothecium reseum*.^{8,9} Subsequent isolations were made from *Gibberella fujikuroi*,¹⁰ *Fusarium culmorum*,¹¹ and *Trichoderma koningii* as the plant growth regulatory active constituent.¹² The biosynthetic pathway has been specifically established with the cell-free extracts of *G. fujikurol*¹³ for cyclonerodiol.

Acknowledgements. Mass spectral data was kindly provided by the Korea Basic Science Institute. This work was supported by the Brain Korea 21 Project in 2003 (F020).

References and Notes

- 1. Faulkner, D. J. Nat. Prod. Rep. 2002, 19, 1-47.
- 2. Pietra, F. Nat. Prod. Rep. 1997, 14, 453-464.
- Li, X.; Lee, S. M.; Choi, H. D.; Kang, J. S.; Son, B. W. Chem. Pharm. Bull. 2003, 51, 1458-1459.
- 4. The fungus was cultured for 30 days (static) at 29 °C in SWS medium: soytone (0.1°o), soluble starch (1.0°o), and seawater

Communications to the Editor

(100°ა).

- 5. Methyl 2.4-dibromo-5-oxo-3-decenoate (2) was isolated as a yellow oil which showed: $[\alpha]_D$ -40 °C (*c* 0.2, CHCl₃); IR (KBr): 2952, 2930, 2856, 1743, 1697, 1437, 1265, 1137 cm⁻¹; UV (MeOH): 203 (loge 3.7), 257 (3.5) nm; LREIMS *m*/z 359 [M+H]⁺ (0.4), 357 [M+H]⁺ (0.9), 355 [M+H]⁺ (0.4), 333 (0.6), 331 (1.1), 329 (0.7), 302 [M-H-C_4H_9]⁻ (3), 300 [M+H-C_4H_9]⁺ (6), 298 [M+H-C_4H_9]⁺ (3), 277 [M-Br]⁺ (8), 275 [M-Br]⁺ (8), 259 [M-C_4H_9-CH_2CO]⁻ (1.9), 257 [M-C_4H_9-CH_2CO]⁺ (3.3), 255 [M-C_4H_9-CH_2CO]⁻ (1.7), 245 (14), 243 (15), 221 (22), 219 (21), 203 (12), 189 (26), 187 (27), 149 (49), 99 (100), 71(76); LRFABMS *m*/z 355 [M-H]⁻, 357 [M+H]⁺, 359 [M+H]⁺; HRFABMS *m*/z 354.9544 (caled for C₁₁H₁+O₃ ⁷⁹Br₂, 354.9545), 356.9521 (caled for C₁₁H₁+O₃ ⁷⁹Br³¹Br, 356.9524). 358.9506 (caled for C₁₁H₁+O₃ ⁸¹Br₂, 358.9504); See Table 1 for NMR spectral data.
- 6. Methyl 2.4-dibromo-5-oxo-2-decenoate (1) was isolated as a yellow oil which showed: $[\alpha]_{\text{II}}$ -10 °C (*c* 0.2, CHCl₃); IR (KBr): 2952, 2930, 2856, 1734, 1436, 1240, 1040, 751 cm⁻¹; UV (MeOH): 203 (loge 3.8), 248 (3.3) nm: LRFABMS *m/z* 355 [M+H]⁻, 357 [M+H]⁺, 359 [M+H]⁺; HRFABMS *m/z* 354,9543 (calcd for C₁₁H₁₇O₃ ⁷⁹Br₂, 354,9544), 356,9522 (calcd for C₁₁H₁₇O₃ ⁷⁹Br³Br³Br. 356,9524), 358,9506 (calcd for C₁₁H₁₇O₃ ⁸¹Br₂, 358,9506); See Table 1 for NMR spectral data.
- Cyclonerodiol (3) was isolated as a yellow oil which showed spectral data virtually identical to those reported in the literature¹² except for the assignment of NMR data. The NMR data were reassigned as follow: ¹H-NMR (CDCl₃) & 1.05 (3H, d. *J* = 7.0 Hz, H₃-1). 1.59 (1H, m, H-2). 1.57, 1.59 (each 1H, m, H₂-4), 1.86 (2H, m, H₂-5), 1.83 (1H, m, H-6), 1.49 (2H, t, *J* = 8.3 Hz, H₂-8), 2.05 (2H, m, H₂-9), 5.12 (1H, t. *J* = 7.0 Hz, H-10). 1.69 (3H, s, H₃-12). 1.26 (3H, s, H₃-13), 1.17 (3H, s, H₃-14). 1.63 (3H, s, H₃-15). ¹³C-NMR (CDCl₃) & 14.5 (C-1). 44.2 (C-2), 81.3 (C-3), 40.4 (C-4), 24.3 (C-5), 54.2 (C-6), 74.8 (C-7), 40.4 (C-8), 22.6 (C-9), 124.5 (C-10), 131.7 (C-11), 25.7 (C-12), 26.1 (C-13), 25.0 (C-14), 17.7 (C-15).
- Nozoe, S.; Goi, M.; Morisaki, N. Tetrahedron Lett. 1970, 15, 1293.
- Evans, R.; Hanson, J. R.; Nyfeler, R. J. Chem. Soc., Perkin Trans. 1 1976, 1214.
- Cross, B. E.; Markwell, R. E.; Stewart, J. C. *Tetrahedron* 1971, 27, 1663.
- Hanson, J. R.: Hitchcock, P. B.: Nyfeler, R. J. Chem. Soc., Perkin Trans. 1 1975, 1586.
- Cutler, H. G.; Jaeyno, J. M.; Phillips, R. S.; VonTersch, R. L.; Cole, P. D.; Montemurro, N. Agric, Biol. Chem. 1991, 55, 243.
- Cane, D. E.; Iyengar, R.; Shiao, M.-S. J. Am. Chem. Soc. 1981, 103, 914.