Synthesis of Tetracyclic 5-Azaindole Analogues by Palladium-Catalyzed Sequential Annulation

Nack-Do Sung,* Ok-Kyung Yang, Song Su Kang, and Eul Kgun Yum*

[†]Division of Applied Biology and Chemistry, Chungnam National University, Yusung, Daejeon 305-764, Korea Department of Chemistry, Chungnam National University, Yusung, Daejeon 305-764, Korea Received May 4, 2004

Tetracyclic 5-azaindole analogues were prepared by palladium-catalyzed sequential annulation of benzylidene(3-iodopyridinyl-4-yl)amine and 1-aryl substituted internal alkynes under $Pd(OAc)_2$, *n*-Bu₄NCl, and Et₃N at 120 °C. The synthetic procedure showed possible diversification of tetracyclic 5-azaindole analogues by varying the 1-aryl substituent in internal alkynes.

Key Words : Tetracyclic 5-azaindole analogues, Palladium, Catalyst, Annulation, 1-Aryl alkynes

Introduction

Heteroannulated indole and quinoline alkaloids constitute an important class of natural compounds due to their biological activities, which are based mostly on their affinity toward DNA.^{1,2} Therefore, these compounds play crucial roles as potential leads for the discovery of biologically active substances.³ Although isosteric replacements of tetracyclic indole derivatives have strong antibacterial, antimycotic, and antitumor activities,⁴ few synthetic methods for tetracyclic azaindole analogues have been reported in the literature.^{5,6} Recently, our group and Larock's group have reported effective annulation methods7 using internal alkynes to prepare a variety of condensed heterocycles, such as indoles,⁸ isoindolo[2,1-a]indoles,⁹ carbolines,¹⁰ azaindoles,¹¹ pyrroloquinolines,¹² and pyridopyrrolo[2,1-a]isoindoles.¹³ Our continued interest is to find prospective bioactive heteroannulated indole analogues. Chemical isosteric replacements of biologically active substances often have improved biological properties, such as potency, selectivity, toxicity, and metabolic stability.¹⁴ In this paper, we describe the facile preparation of tetracyclic 5-azaindole analogues using palladium-catalyzed annulation with internal alkynes.

Results and Discussion

We examined the palladium-catalyzed reaction of benzylidene(3-iodopyridin-4-yl)amine with various 1-aromatic substituted internal alkynes under 5 mol % Pd(OAc)₂, 1 eq *n*-Bu₄NCl, 2 eq (*i*-Pr)₂NEt, and DMF, at 120 °C. The reactions of benzylidene(3-iodopyridin-4-yl)amine with various functionalized internal alkynes provided reasonable yields of tetracyclic 5-azaindole analogues. The results are summarized in Table 1.

The effect of substituents on the aryl group was first examined with several different aryl internal alkynes (entries 1-4). The reaction using the 3-fluorophenyl internal alkyne provided a somewhat higher yield of the desired product as compared to the reaction using 3-methoxyphenyl internal alkyne. However, the total reaction time was quite dependent **Table 1.** Synthesis of tetracyclic 5-azaindole analogues bypalladium-catalyzed annulation

Nack-Do Sung et al.

Scheme 1

on the substituent in the phenyl group. Although single tetracyclic 5-azaindole analogues were obtained from the reactions using meta-substituted phenyl internal alkynes, the regioselectivity of the second annulation was quite dependent on the phenyl substituent. Conversely, the reaction using 1-(2-thiophenyl)-1-hexyne provided 20% of the tetracyclic product owing to deactivation of the palladium catalyst. Finally, the reactions using various alkyl-substituted 1-aryl internal alkynes afforded moderate yields of tetracyclic 5azaindole analogues (entries 5-8). Considering previous annulation results,^{8,12} the annulation might proceed via the route illustrated in Scheme 1. The actual catalyst Pd(0) could be formed from $Pd(OAc)_2$ by the reaction medium, Pd(0)reacts with any halides via oxidative addition. The anylpalladium complex coordinates and adds the triple bond of an internal alkyne.

The resulting vinyl palladium intermediate adds the carbon-nitrogen double bonds sequentially. The tetracyclic 5-azaindole analogues are formed by either electrophilic palladation of the resulting π -palladium intermediate onto the adjacent aromatic ring or oxidative addition of the neighboring aryl carbon-hydrogen bond of the aromatic ring to the π -palladium intermediate to form a Pd intermediate, with sequential elimination of HI by the base, and regeneration of the Pd(0) catalyst by reductive elimination.

Conclusion

The palladium-catalyzed annulation of benzylidene(3iodopyridin-4-yl)amine with aryl substituted internal alkynes provided tetracyclic 5-azaindole analogues in moderate yields. The annulation reaction showed possible diversification of tetracyclic 5-azaindole analogues with various aryl imines and internal alkynes.

Experimental Section

IR spectra were obtained using a JASCO FT-IR 410 spectrometer. All the ¹H- and ¹³C-NMR spectra were recorded on a JNM-A1. 400-MHz spectrometer at Chungnam National University. Chemical shifts are given as values relative to tetramethylsilane (TMS) as an internal standard. The GC/MS spectra were obtained on a Shimadzu QP 1000. Melting points were determined on a Mut-TEM apparatus and are uncorrected. Microanalyses were performed at Chungnam National University with a CE Instrument EA 1110. The products were purified by flash chromatography on 230-400-mesh ASTM 60 silica gel. All the bases, *n*-Bu₄NCl, and palladium species were purchased from Aldrich Chemical Co. The other chemicals were used as obtained from commercial sources, unless otherwise noted.

General procedure for the synthesis of the aryl alkynes^{9b}. To a solution of an iodo- or bromoarene (10.0 mmol) and a terminal alkyne (12.0 mmol) in Et₃N (40 mL) was added PdCl₂ (PPh₃)₂ (140 mg, 2 mol %) in Et₃N (40 mL). The mixture was then stirred for 5 min, and Cul (20 mg, 1 mol %) was added. The resulting mixture was heated under a nitrogen atmosphere at 50 °C. The reaction mixture was allowed to cool to rt, and the ammonium salt was removed by filtration. The solvent was removed under reduced pressure, and then the residue was removed under reduced pressure. The residue was purified by column chromatography on silica gel to afford the pure alkynes.

Preparation of benzylidene(3-iodo-pyridin-4-yl)amine. A mixture of 4-amino-3-iodopyridine¹⁵ (1.2 g, 5.5 mmol), benzaldehyde (0.58 g, 5.5 mmol), and a molecular sieve (1

Synthesis of Tetracyclic 5-Azaindole Analogues

g) in benzene (40 mL) was refluxed for 24 h using the Dean-Stark apparatus to remove the water produced. The reaction mixture was monitored by TLC to establish completion. The reaction mixture was then cooled to rt. and the solvent was removed under reduced pressure. The oily residue was dissolved in a minimal amount of ethanol and cooled. The resulting solid was collected to afford 1.23 g (73%) of the imine as a vellow solid. mp 96-97 °C; IR (KBr) 1644 cm⁻¹; ¹H-NMR (CDCl₃) δ 8.81 (s 1H. -N=CH-), 8.43 (d, J = 4.8 Hz, 1H Ar-H). 8.22 (s, J = 4.8 Hz, 1H, ArH), 7.94-7.92 (m. 1H, ArH), 7.52-7.47 (m, 4H, ArH), 6.83 (d, J = 4.8 Hz, 1H, ArH); ¹³C-NMR (CDCl₃) δ 162.8, 159.7, 157.1, 149.9, 134.7, 132.4, 129.4, 129.2, 128.7, 113.8; MS (EI) (m/z) 309 (M⁺+1, 11). 308 (M⁻, 79). 204 (17). 181 (56). 91 (31), 77 (23), 43 (100): Anal. Calcd for C12H9N2I: C. 46.78: H, 2.94: N. 9.09. Found: C, 46.81; H. 2.90; N, 9.05.

General procedure for the synthesis of tetracyclic 5azaindole derivatives by palladium-catalyzed annulation. Palladium acetate (6 mg, 0.025 mmol). n-Bu₄NCl (139 mg, 0.5 mmol), Et₃N (101 mg, 1.0 mmol), benzvlidene(3-iodopyridin-4-yl)amine (154 mg, 0.5 mmol). diphenylacetylene (178 mg, 1.0 mmol), and DMF (10 mL) were added to a pressure tube equipped with a stirring bar. After heating the reaction mixture for 11 h at 120 °C, the resulting solution was diluted with ethyl acetate and washed with saturated aqueous ammonium chloride. The organic layer was dried over MgSO₄, filtered, and concentrated. The residue was purified by column chromatography using hexane-ethyl acetate (1:1). 6.11-Diphenyl-6H-pyrido[3',4';4,5]pyrrolo-[2,1-a]isoindole (1) (120 mg, 67%) was obtained as a yellow solid. mp 149-150 °C: IR (KBr) 3025, 1602, 1455 cm⁻¹; ¹H-NMR (CDCl₃) δ 9.04 (s. 1H, ArH). 8.13 (d. J = 5.6 Hz, 1H. ArH). 7.83 (d, J = 7.6 Hz, 1H. ArH). 7.74 (d, J = 4.8 Hz, 2H. ArH), 7.37 (t, J = 7.3 Hz, 1H, ArH), 7.29-7.24 (m, 3H, ArH). 7.22-7.08 (m, 5H, ArH), 6.75 (d, J = 6.0 Hz, 1H, ArH), 5.98 (s. 1H, ArCH); ¹³C-NMR (CDCl₃) δ 147.9, 142.2, 140.9, 139.6, 137.6, 136.5, 133.2, 130.4, 128.9, 128.8, 129.0, 128.9, 128.5, 128.2, 128.2, 126.8, 123.8, 121.0, 109.0, 104.9, 63.9; MS (EI) (m/z) 358 (M⁺, 100), 281 (55), 64 (17); Anal. Caled for C₂₆H₁₈N₂: C, 87.12; H. 5.06; N, 7.82. Found: C. 87.09; H. 5.07; N. 7.83.

The following compounds were obtained using the above general procedure.

11-*n***-Butyl-9-fluoro-6-phenyl-6***H***-pyrido[3',4':4,5]pyrrolo-[2,1-***a***]isoindole (2). The compound (2) was obtained as brown oil in 45% yield with a 24 h reaction (Table1. entry 2). IR (KBr) 3029. 1604, 1467 cm⁻¹: ¹H NMR (CDCl₃) \delta 8.81 (s. 1H, ArH). 8.00 (s. 1H, ArH). 7.48 (d.** *J* **= 7.2 Hz, 1H. ArH). 7.36-7.20 (m. 4H, ArH). 7.07-6.09 (m. 2H. ArH). 6.86-6.81 (m, 2H. ArH). 5.99 (s. 1H. ArCH), 2.98 (d.** *J* **= 7.6 Hz, 2H. CH₂). 1.71 (q. 2H, CH₂). 1.39 (m, 2H. CH₂). 0.89 (t.** *J* **= 7.2 Hz, 3H. CH₃); ¹³C NMR (CDCl₃) \delta 162.9, 142.6. 142.1, 140.2. 137.8, 136.6, 132.9. 131.0, 128.9, 128.6. 126.9, 125.2, 117.1, 114.5, 114.2, 108.3, 108.1, 63.7, 33.2. 24.1, 22.6, 14.0; MS (EI) (***m***·***z***) 356 (M[¬], 6). 313 (22). 149 (13), 70 (18). 43 (100): Anal. Calcd for C₂₄H₂₁N₂F: C. 80.87: H, 5.94; N. 7.86. Found: C, 80.85: H, 5.96; N. 7.86**

Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9 1353

11-*n***-Butyl-7-methoxy-6-phenyl-6***H***-pyrido[3',4':4,5]pyrrolo[2,1-***a***]isoindole (3). The compound (3) was obtained as yellow solid in 34 % yield with a 12 h reaction (Table 1, entry 3). mp = 150-151 °C: IR (KBr) 2928. 1466 cm⁻¹: ¹H NMR (CDCl₃) \delta8.90 (s, 1H, ArH), 8.10 (d,** *J* **= 5.6 Hz. 1H. ArH), 7.33-7.30 (m. 3H. ArH), 7.11-7.09 (m, 2H, ArH), 6.79-6.74 (m. 2H. ArH). 6.04 (s. 1H. ArC<u>H</u>). 3.87 (s. 3H. OCH₃), 3.09 (t.** *J* **= 7.6 Hz, 2H. CH₂), 1.82 (q,** *J* **= 7.6 Hz. 2H, CH₂). 1.49 (m, 2H. CH₂). 0.99 (t.** *J* **= 7.2 Hz. 3H, CH₃): ¹³C NMR (CDCl₃) \delta 160.1, 142.9. 140.6. 139.8, 139.2, 138.6. 136.6. 132.6. 129.7, 129.1. 128.5, 126.9, 124.7, 113.1. 108.1, 106.8. 104.8. 63.7, 55.5, 33.3, 24.1, 22.6. 14.0: MS (EI) (***m***:***z***) 368 (M⁺. 27), 325 (100). 293 (26), 281 (17). 205 (13), 140 (11); Anal. Calc. for C₂₅H₂₄N₃O: C, 81.49: H. 6.57: N, 7.60. Found: C. 81.46; H, 6.59: N, 7.61**

Compound 4. The compound (4) was obtained as brown oil in 20% yield with with a 24 h reaction (Table 1. entry 4). IR (KBr) 3041. 2925, 1552. 1454 cm⁻¹; ¹H NMR (CDCl₃) δ 8.84 (s. 1H, ArH), 8.07 (d. J = 5.6 Hz, 1H. ArH). 7.35-7.32 (m. 4H, ArH), 7.18-7.14 (m. 2H, ArH), 6.88 (d, J = 4.8 Hz. 1H. ArH). 6.75 (d. J = 5.6 Hz, 1H, ArH), 6.10 (s. 1H, ArCH₂), 2.95 (t. J = 7.6 Hz, 2H, CH₂), 1.84 (q. J = 7.6 Hz, 2H, CH₂), 1.46 (m, 2H. CH₂), 0.99 (t. J = 7.2 Hz, 3H, CH₃): ¹³C NMR (CDCl₃) δ 141.7. 139.8. 137.7. 137.2, 129.6, 129.1, 128.6. 128.4. 126.8. 126.7, 125.8. 121.3, 107.3, 105.5, 104.9, 63.3, 32.6. 24.6, 22.7, 14.1; MS (EI) (*m*/2) 344 (M⁻, 17). 301 (40), 149 (10). 105 (15), 43 (100); Anal. Calcd for C₂₂H₂₀N₂S: C, 76.71; H, 5.85; N. 8.13. Found: C, 76.69; H, 5.83; N. 8.15.

11-Methyl-6-phenyl-6H-pyrido[**3'**,**4'**:**4**,**5**]**pyrrolo**[**2**,1-*a*]isoindole (5). The compound (5) was obtained as a yellow solid in 55% yield with a 10 h reaction (Table 1, entry 5). mp 162-163 °C: IR (KBr) 2916, 1449 cm⁻¹: ¹H-NMR (CDCl₃) δ 8.26 (s, 1H. ArH). 8.18 (d. *J* = 5.6 Hz, 1H. ArH), 7.84 (d. *J* = 7.6 Hz. 1H, ArH), 7.48-7.43 (m. 2H, ArH). 7.33-7.26 (m, 5H. ArH). 7.14-7.12 (m. 2H. ArH). 6.15 (s. 1H, ArCH), 2.58 (s, 3H. CH₃): ¹³C-NMR (CDCl₃) δ 147.3, 143.0. 138.4, 138.3, 138.2. 132.6. 131.4. 130.1, 129.2. 128.7, 128.5, 128.0, 127.0. 124.1. 121.5. 113.9. 101.7, 64.6. 8.8; MS (EI) (*m*:*z*) 297 (M⁻⁺+1, 12), 296 (M⁺. 100). 219 (39). 146 (14); Anal. Calcd for C₂₁H₁₆N₂: C. 85.11: H. 5.44; N, 9.45. Found: C, 85.07: H, 5.46; N. 9.47.

11-Hydroethyl-6-phenyl-6H-pyrido[3',4':4,5]**pyrrolo**[2, **1**-*a*]**isoindole** (6). The compound (6) was obtained as a yellow solid in 43% yield with a 20 h reaction (Table 1 entry 6). mp = 145-148 °C: IR (KBr) 3397, 2924. 2854 cm⁻¹: ¹H NMR (DMSO) δ 8.95 (s. 1H. ArH). 8.09 (d, J = 5.2 Hz, 1H, ArH), 7.95 (d. J = 7.2 Hz, 1H. ArH). 7.56 (d, J = 5.2 Hz, 2H, ArH), 7.29-7.27 (m, 4H. ArH), 7.13 (d. J = 5.6 Hz. 2H, ArH), 6.82 (d. J = 6.0 Hz, ArH). 6.47 (s. 1H. ArCH₂). 4.97 (br. 1H. -OH), 3.83 (t. J = 7.2 Hz, 2H. CH₂), 3.27 (t, J = 6.8 Hz. 2H. CH₂OH): ¹³C NMR (DMSO) δ 146.8. 142.5, 140.4, 139.9, 138.5. 135.7. 130.5. 129.0, 128.9. 128.5, 128.4, 128.1, 127.7, 126.7, 124.0. 121.3, 103.9. 63.1, 61.7. 27.9; MS (EI) (*m*:*z*) 326 (M+. 26), 295 (100), 218 (8), 147 (8); Anal. Calcd for C₂₂H₁₈N₂O: C, 80.96; H. 5.56; N. 8.58. Found: C, 80.94; H. 5.58; N, 8.58.

1354 Bull. Korean Chem. Soc. 2004, Vol. 25, No. 9

11-Methoxymethyl-6-phenyl-6*H*-pyrido[3',4':4,5]pyrrolo-[2,1-*a*]isoindole (7). The compound (7) was obtained as a yellow solid in 51% yield with a 20 h reaction. mp = 134-135 °C; IR (KBr) 2930, 1454 cm⁻¹; ¹H NMR (DMSO) δ 8.94 (s, 1H. Ar-H). 8.07 (d, J = 6.0 Hz. 1H, ArH), 8.01 (d, J= 7.6 Hz. 1H, Ar-H). 8.07 (d, J = 6.0 Hz. 1H, ArH), 8.01 (d, J= 7.6 Hz. 1H, Ar-H). 7.48 (t. 1H. ArH). 7.37-7.28 (m, 5H. ArH). 7.13-7.11 (m. 2H, ArH), 6.85 (d, J = 6.0 Hz. 1H. ArH). 6.58 (s, 1H. ArCH). 4.97 (s, 2H. CH₂O). 3.38 (s, 3H. OCH₃); ¹³C NMR (DMSO) δ 147.3. 142.6, 141.7, 140.4. 138.2, 135.7, 129.8, 128.9, 128.7, 128.6, 128.4, 128.3. 126.7, 124.1, 122.1, 105.1, 103.0, 63.9, 63.3, 56.9; MS (EI) (*m*/z) 326 (M⁺, 50). 295 (100). 147 (26), 77 (14). 51 (10): Anal. Calcd for C₂₂H₁₈N₂O: C. 80.96; H, 5.56; N. 8.58. Found: C. 80.94; H, 5.57; N. 8.59.

6-Phenyl-6*H***-pyrido[3',4':4,5]pyrrolo[2,1-***a***]isoindole-11carboxylic acid ethyl ester (8). The compound (8) was obtained as a brown solid in 45% yield with a 27 h reaction. mp = 152-155 °C; IR (KBr) 1684 cm⁻¹; ¹H NMR (DMSO) \delta 8.68 (d,** *J* **= 7.6 Hz, 1H. ArH), 8.60 (d,** *J* **= 7.6 Hz, 1H, ArH). 8.19 (s, 1H. ArH). 8.01 (d,** *J* **= 5.6 Hz, 1H, ArH), 7.59 (t,** *J* **= 7.2 Hz, 1H. ArH). 8.01 (d,** *J* **= 7.2 Hz, 1H, ArH), 7.97 (t,** *J* **= 7.2 Hz, 1H. ArH), 7.51 (t,** *J* **= 7.2 Hz, 1H, ArH), 7.19-7.15 (m. 2H, ArH). 6.74 (s, 1H. ArCH₂). 4.47 (q,** *J* **= 7.2 Hz, 2H. OCH₂). 1.47 (t,** *J* **= 7.2 Hz, 3H. CH₃): ¹³C NMR (DMSO) \delta 164.2, 150.9, 147.8, 141.1, 136.1, 129.8, 129.1, 129.0, 128.7, 128.6, 128.5, 128.2, 127.4, 126.7, 125.6, 125.2, 123.2, 64.6, 60.1, 49.8, 14.4; MS (EI) (***m***/z) 355 (M⁻+1, 34), 354 (M⁻, 100), 325 (58), 309 (29), 282 (38), 281 (46), 140 (23), 126 (20).**

Acknowledgement. This work was supported by a grant (No. R11-2002-100-03002-2) from the ERC program of the Korea Science & Engineering Foundation.

Nack-Do Sung et al.

References

- 1. Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
- Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Elsevier Science Ltd., 1996; Vol. 2, pp 1-117.
- 3. Kirsch, G. H. Current Organic Chemistry 2001, 5, 507.
- Pierre, A.; Atass, G.; Devissaguet, M.; Bisagni, E. Drugs Fut. 1997, 22, 53 and references therein.
- 5. Desarbree, E.; Merour, J.-Y. Heterocycles 1995, 41, 1987.
- 6. Merour, J.-Y.; Joseph, B. Current Organic Chemistry 2001, 5, 471.
- Reviews: (a) Larock, R. C. J. Organomet. Chem. 1999, 576, 111.
 (b) Larock, R. C. Pure and Appl. Chem. 1999, 71, 1435. (c) Li, J. J.: Gribble, G. W. Palladium in Heterocyclic Chemistry. Pergamon: 2000; pp 143-146.
- (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689.
 (b) Larock, R. C.; Yum, E. K.; Reffik, D. J. Org. Chem. 1998, 63, 7652.
 (c) Hong, K. B.; Lee, C. W.; Yum, E. K. Tetrahedron Lett. 2004, 45, 693.
- (a) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, 1, 1551. (b) Roesch, K. R.; Larock, R. C. J. Org. Chem. 2001, 66, 412.
- (a) Zhang, H.; Laroek, R. C. Org. Lett. 2002, 4, 3035. (b) Zhang, H.; Laroek, R. C. J. Org. Chem. 2003, 68, 5132.
- (a) Park, S. S.; Choi, J.-K.; Yun, E. K.; Ha, D.-C. Tetrahedron Lett. 1998, 39, 627. (b) Chi, S. M.; Choi, J.-K.; Yum, E. K.; Chi, D. Y. Tetrahedron Lett. 2000, 41, 919. (c) Lee, M. S.; Yum, E. K. Bull. Korean Chem. Soc. 2002, 23, 535.
- (a) Kang, S. K.; Park, S. S.; Kim, S. S.; Choi, J.-K.; Yum, E. K. *Tetrahedron Lett.* **1999**, 40, 4379. (b) Yum, E. K.; Kang, S. S.; Kim, S. S.; Choi, J.-K.; Cheon, H. G. *Bioorg. Med. Chem. Lett.* **1999**, 9, 1819. (c) Gee, M. B.; Lee, W. J.; Yum, E. K. *Bull. Korean Chem. Soc.* **2003**, 24, 1193. (d) Lee, W. J.; Gee, M. B.; Yum, E. K. *Heterocycles* **2003**, 60, 1821.
- Kang, S. S.; Yum, E. K.; Sung, N.-D. Heterocycles 2003, 60, 2727.
- Williams, D. A.: Lemke, T. L. Foye's Principles of Medicinal Chemistry, 5th ed; Lippincott Williams & Wilkins: 2002.
- (a) Marsais, F.; Gogard, A.; Queguiner, G. J. Heterocycl. Chem. 1989,
 26, 1589. (b) Queguiner, G. J. Heterocycl. Chem. 2000, 37, 615.