DOI QR코드

DOI QR Code

Modification and Inactivation of Human Ceruloplasmin by Oxidized DOPA

  • Published : 2004.05.20

Abstract

Ceruloplasmin (CP), the blue oxidase present in all vertebrates, is the major copper-containing protein of plasma. It has been proposed that oxidation of L-3,4-dihydroxyphenylalanine (DOPA) may contribute to the pathogenesis of neurodegenerative disorders. The effect of the oxidized products of DOPA on the modification of human CP was investigated. When CP was incubated with the oxidized L-DOPA, the protein was induced to be aggregated and ferroxidase activity was decreased in a time-dependent manner. Radical scavengers and catalase significantly inhibited the oxidized DOPA-mediated CP aggregation. Copper chelatrors, Diethylenetriaminepenta acetic acid (DTPA) and Diethyldithiocarbamic acid (DDC), also inhibited the oxidative modification of CP. The results suggested that DOPA oxidation led to the formation of free radical and induced the CP aggregation.

Keywords

References

  1. Takahashi, N.; Ortel, T. L.; Putnam, F. W. Proc. Natl. Acad. Sci.USA 1984, 81, 390-394. https://doi.org/10.1073/pnas.81.2.390
  2. Goldstein, I. M.; Kaplan, H. B.; Edelson, H. S.; Weissmann, G. J.Biol. Chem. 1979, 254, 4040-4045.
  3. Winge, D. R. Semin. Liver Dis. 1984, 4, 239-251. https://doi.org/10.1055/s-2008-1041774
  4. Folkman, J.; Klagsburn, M. Science 1987, 235, 442-447. https://doi.org/10.1126/science.2432664
  5. Walker, F. J.; Fay, J. J. Biol. Chem. 1990, 265, 1834-1836.
  6. Ryden, L. Copper Proteins and Copper Enzymes, Vol. III; 1984.
  7. Gutteridge, J. M. C. Chem. Biol. Interact. 1985, 56, 113-120. https://doi.org/10.1016/0009-2797(85)90043-2
  8. Fleming, R. E.; Whitman, I. P.; Gitlin, J. D. Am. J. Physiol. 1991,260, L68-L74.
  9. Gitlin, J. D. J. Biol. Chem. 1988, 263, 6281-6287.
  10. Kim, I. G.; Park, S. Y.; Kim, K. C.; Yum, J. J. FEBS Lett. 1998,431, 473-475. https://doi.org/10.1016/S0014-5793(98)00817-5
  11. Cha, M.-K.; Kim, I.-H. Biochemistry 1999, 38, 12104-12110. https://doi.org/10.1021/bi990444b
  12. Winyard, P.; Lunec, J.; Brailsford, S.; Blake, D. Int. J. Biochem.1984, 16, 1273-1278. https://doi.org/10.1016/0020-711X(84)90227-1
  13. Winyard, P. G.; Hider, R. C.; Brailsford, S.; Drake, A. F.; Lunec,J.; Blake, D. R. Biochem. J. 1989, 258, 435-445.
  14. Jenner, P. Pathol. Biol. (Paris) 1996, 44, 57-64.
  15. Graham, D. G.; Tiffany, S. M.; Bell, W. R. Jr.; Gutknecht, W. F. Mol. Pharmacol. 1978, 14, 644-653.
  16. Pileblad, E.; Slivka, A.; Bratvold, D.; Cohen, G. Arch. Biochem.Biophys. 1988, 263, 447-452. https://doi.org/10.1016/0003-9861(88)90657-1
  17. Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology andMedicine; Oxford: 1992.
  18. Sutton, H. C.; Winterbourn, C. C. Free Radic. Biol. Med. 1989, 6,53-60. https://doi.org/10.1016/0891-5849(89)90160-3
  19. Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad.Sci. USA 1993, 90, 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  20. Halliwell, B.; Gutteridge, J. M. Mol. Aspects. Med. 1985, 8, 89-193. https://doi.org/10.1016/0098-2997(85)90001-9
  21. Berlett, B. S.; Stadtman, E. R. J. Biol. Chem. 1997, 272, 20313-20316. https://doi.org/10.1074/jbc.272.33.20313
  22. Lee, K.; Cho, Y.; Ueom, J.; Na, S.; Park, J. E.; Jo, I.; Kang, J. Bull.Korean Chem. Soc. 2001, 22, 1175-1176.
  23. Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.Gartner, F.-H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.;Olson, B. J.; Klenk, D. C. Anal. Biochem. 1985, 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  24. Ahn, S.-Y.; Jeon, S.-H.; Park, H.-J.; Kong, K.-H. Bull. KoreanChem. Soc. 2003, 24, 1188-1192. https://doi.org/10.5012/bkcs.2003.24.8.1188
  25. Sunderman, F. W. Jr.; Nomoto, S. Clin. Chem. 1970, 16, 903-910.
  26. Laemmli, U. K. Nature 1970, 227, 680-685. https://doi.org/10.1038/227680a0
  27. Halliwell, B.; Gutteridge, J. M. C. FEBS Lett. 1992, 307, 108-112. https://doi.org/10.1016/0014-5793(92)80911-Y
  28. Ilic, T.; Jovanovic, M.; Jovicic, A.; Tomovic, M. Vojnosanti. Pregl.1998, 55, 463-468.
  29. Ilic, T.; Jovanovic, M.; Jovicic, A.; Tomovic, M. Funct. Neural.1999, 14, 141-147.
  30. Imlay, J. A.; Chin, S. M.; Linn, S. Science 1988, 240, 640-642. https://doi.org/10.1126/science.2834821
  31. Sagripanti, J. L.; Kraemer, K. H. J. Biol. Chem. 1989, 264, 1729-1734.
  32. Sagripanti, J. L.; Swicord, M. L.; Davis, C. C. Radiat. Res. 1987,110, 219-231. https://doi.org/10.2307/3576900
  33. O'Connell, M. J.; Peters, T. J. Chem. Phys. Lipids 1987, 45, 241-249. https://doi.org/10.1016/0009-3084(87)90067-3
  34. Pall, H. S.; Williams, A. C.; Blake, D. R.; Lunec, J.; Gutteridge, J.M.; Hall, M.; Taylor, A. Lancet. 1987, 2, 238-241.
  35. Multhaup, G.; Schlicksupp, A.; Hesse, L.; Behler, D.; Ruppert, T.;Masters, C. L.; Beyreuther, K. Science 1996, 271, 1406-1409. https://doi.org/10.1126/science.271.5254.1406

Cited by

  1. Validation of Free Flow Electrophoresis as a Novel Plasma and Serum Processing and Fractionation Method in Biobanking vol.10, pp.4, 2012, https://doi.org/10.1089/bio.2012.0007
  2. Peroxidase Activity of Cytochrome c vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1889
  3. SAMs of 2-Aminoethanethiol Modified with 3,4-Dihydroxyphenylalanine for the Electrocatalytic Oxidation of NADH on Gold Electrodes vol.25, pp.6, 2004, https://doi.org/10.5012/bkcs.2004.25.6.786
  4. Protective Effects of Carnosine and Relative Compounds on DNA Cleavage by Advanced Glycation End Products vol.26, pp.1, 2004, https://doi.org/10.5012/bkcs.2005.26.1.178
  5. Protection by Carnosine and Homocarnosine against L-DOPA-Fe(III)-Mediated DNA Cleavage vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1251
  6. Aggregation of α-Synuclein Induced by Oxidized Catecholamines as a Potential Mechanism of Lewy Body vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1255
  7. 금 나노입자를 회합시킨 수식된 흑연전극으로 NADH의 전기촉매 산화반응 vol.10, pp.1, 2004, https://doi.org/10.5229/jkes.2007.10.1.001