Synthesis of Cyclic Peroxides via Enyne-RCM/Diels-Alder Reaction Sequence

Young-Keun Yang, Susie Lee, and Jinsung Tae ${ }^{\circ}$
Center for Bioactive Molecular Hybrids (CBM/H) and Department of Chemistry, Yonsei Unwersity, Seoul 120-7+9, Korea Recenved Juty 21, 2004

Key Words: Cyclic peroxides. Cyclic hỵdroxylamines. Diels-Alder reactions. Enỵne metathesis. Singlet oxygen

The sequence of an enyne ring-closing metathesis (enymeRCM) ${ }^{1.2}$ followed by a Diels-Alder reaction has been applied widely in organic synthesis for the expeditious generation of molecular complexity: Although several dienophiles have been employed to date in Diels-Alder reactions of the cyclic conjugated dienes generated from enyne-RCM. singlet oxygen has not been one of them. The conjugated dienes 5 . which are readily obtained by enyne-RCM, could be reacted with singlet oxygen ${ }^{3}$ to generate the corresponding cyclic peroxides 6. as shown in Scheme l. The cyclic peroxide unit is a component of many biologically important structures: furthermore. it can be transformed into several other valuable skeletons. For example, reductive cleavage of the $\mathrm{O}-\mathrm{O}$ bond could generate allylic diols. ${ }^{+}$Base- or transition metal-catalyzed $\mathrm{O}-\mathrm{O}$ bond cleavage, followed by dehydration. is a well-known reaction strategy to synthesize furans. ${ }^{155}$ We have recently reported the synthesis of 1.2 oxaza and 1.2-diaza heterocycles having a diverse range of scaffolds. by ring-closing metathesis. ${ }^{67}$ Herein. we report our recent results on the synthesis of cyclic peroxides by Diels-Alder reactions between singlet oxygen and enyneRCM adducts.
The substituted enyne substrates 3 were prepared from the secondary alcohols 2 and N -Boc-protected alkynyl hydroxylamines 1 under the Mitsunobu conditions (Scheme 1). The enynes $\mathbf{3}$ were treated with Grubbs' cataly'st ta according to our previously reported procedure ${ }^{67}$ to give the enyne-RCM adducts 5 in moderate to good yields (Table 1). For substrates 3 e and 3 g , more reactive second generation Grubbs' catalyst $\mathbf{4}$ b was used for the metathesis reactions (Table 1. entries 5 and 7).
The substituted conjugated dienes $\mathbf{5}$ and previously synthesized ones ${ }^{\text {sb }}$ were utilized in the cycloaddition reaction with singlet oxygen. Acetonitrile solutions of the dienes and a catalytic amount of rose Bengal sensitizer were irradiated using a $400-\mathrm{W}$ tungsten lamp while a steady flow of oxygen
was passed though the solution. The reaction flask was cooled in an ice-bath during this procedure. Table 2 summarizes the results of these cycloaddition reactions. The formation of $\mathbf{6 a}$ from the corresponding enyne-RCM adduct was complete after 7 h : this product was isolated in 73% yield (Table 2 , entry 1). The analogous peroxide $\mathbf{6 b}$ was obtained in 82% y ield (Table 2, entry 2). The homologues with adjacent 7 - and 8 -membered 1.2-oxaza rings were also

Table 1. Synthesis of Conjugated Dienes by Enyne-RCM

"Reaction time and concentrations. "Isolated vields. "Used 10 mol ${ }^{4}$. of 4b, toluene. reflus.

Scheme 1

Table 2. Diels-Alder Reactions of Conjugated Dienes with Singlet Oxygen ${ }^{\text {a }}$
Entry Time $^{\text {b }}$
"Reaction conditions: O_{2}, cat. rose Bengal, $400-\mathrm{W}$ tungsten lamp, $\mathrm{CH}_{3} \mathrm{CN}$. $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Reaction time. 'The yield in parenthesis is based on the recovered starting material. "The relative stereochemistries were determined by noe experiments.
prepared in good yields (Table 2. entries 3 and 4).
Next. we examined dienes featuring greater degrees of substitution on either their 1.2-oxaza or 1,2-dioxine ring. Trisubstituted peroxide 6e was synthesized in 69% yield (Table 2, entry 5). Additional substituents on the 1.2-oxaza rings results in the generation of two diastereoisomeric products. In general. substituents on the carbon atom adjacent to the ring-forming sites produced the higher diastereoisomeric ratios. The peroxides 6 f and $\mathbf{6 j}$ were obtained as single diastereoisomers and 6 g was obtained as the major product in a $4: 1$ ratio (Table 2 . entries 6,10 . and 7. respectively). On the other hand. compounds having substituents positioned one extra carbon atom away from the
ring-forming sites exhibited poor diastereoselectivity - they yielded nearly equal amounts of their two diastereoisomers but the yields of their products are comparable to those of the other reactions (Table 2, entries 8 and 9).

In conclusion, we have shown that the reaction sequence of an enyne-RCM followed by a [4+2] cycloaddition with singlet oxygen is synthetically valuable method for the synthesis of cyclic peroxides. By this reaction sequence, we have synthesized several cyclic peroxides fused with a cyclic hydroxylamine ring.

Acknowledgement. This work was supported by Center for Bioactive Molecular Hybrids (CBMH).

References

1. For selected recent reviews on olefin metathesis. see: (a) Grubbs. R. H.; Chang. S. Terahedron 1998, 54, 4413 . (b) Fürstner. A. Angew Chent Im. Ed 2000. $39,3012$.
2. For reviews on enyne-metathesis. see: (a) Diver, S. T.: Giessert, A. J. Chem. Rev: 2004. 104. 1317. (b) Poulsen. C. S.: Madsen. R. Synhesis 2003. 1. (c) Mori. M. Top. Organonet. Chem. 1998. I. 133.
3. For recent examples of [4-2] cycloadditions of singlet oxygen. see: (a) Adam, W; Bosio. S. G.: Degen, H.-G.; Krebs. O.: Stalke. D.; Schumacher, D. Eur J. Org Chem. 2002, 3944. (b) Griesbeck. A. G.: Bartoschek. A. Chem. Conmon 2002. 1594. (c) Jung. M.: Ham. J.: Song. T. Org. Lett 2002. 4. 2763.
4. (a) Hioki. H.: Ooi. H.: Hamano. M.: Mimura. Y.: Yoshio. S.: Kodama, M.; Ohta. S.; Yanai. M.: Iheqami, S. Tetrahedron 2001. 57. 1235. (b) Suzuki, M.; Oda, Y;; Hamanaka, N.: Noyori, R. Heterocycles 1990, 30. 517 . (c) Mueller. P. Rodriguez, D. Hew Chim Acta 1985. 68.975.
5. (a) Atasoy. B.: Ozen. R. Terahedron 1997. 53. 13867. (b) Suzuki. M.: Ohtake. H.: Kameya. Y.: Hamanaka. N.: Noyori. R. J. Org. Chent 1989, 54, 5292. (c) Mahindroo, V. K.; Singh, V.: Dev, S. Ind. J. Chem, Sect. B 1988. 27B, 1080. (d) OShea, K. E.: Foote. C. S. J. Org Chem. 1989, 54. 3475 (e) Kohmoto. S.: Kasai. S.; Yamamoto. M.: Yamada. K. Chem. Lett. 1988. 1477. (f) Harirchian. B.: Magnulus. P. D. Synh Commm. 1977. 7. 119.
6. (a) Yang. Y.-K.: Tae. J. Syle"1 2003. 1043. (b) Yang. Y.-K.: Tae. T. Sylett 2003, 2017. (c) Tae, J; Hahn, D.-W. Terrahedron Letl. 2004. $+5,3757$.
7. (a) Koide, K.; Finkelstein. Z. B.: Verdine. G. L. J. Am. Chem. Soc. 2001. 123. 398. (b) Miyabe. H.: Yoshida. K.: Matsumura. A.: Yamauchi. M.: Takemoto. Y. Symett 20013. 567.
8. Representative procechire for the singlet oxvgen Diels-Alder reaction: An acetonitrile solution (5 mL) of the RCM adduct (100 $\mathrm{mg}, 0.44 \mathrm{mmol}$) and a catalytic amount of rose Bengal bengal sensitizer (2 mg) was irradiated using a $400-\mathrm{W}$ tungsten lamp while a steady flow of oxygen was passed though the solution. The reaction flask was cooled in an ice-bath during this procedure. After 6 h . the solvent was removed under reduced pressure and the residue misture was column chromatographed on silica gel (elution with $5^{\circ} \%$ ethyl acetate in hexanes) to give 86 mg ($75^{\circ} \%$) of 6c. Spectral data for 6 c : colorless oil: $R_{\mathrm{f}}=0.2$ (silica gel, hexane: $\mathrm{EtOAc}=2: 1):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta=5.79(\mathrm{~s} .1 \mathrm{H})$. $4.68-4.61(\mathrm{ml} .3 \mathrm{H}) .4 .56-4.48(\mathrm{~m} .2 \mathrm{H}) .3 .99(\mathrm{~d} . J=13.4 \mathrm{~Hz} .1 \mathrm{H})$. $3.34-3.28(\mathrm{~m} .1 \mathrm{H}) .2 .26-2.24(\mathrm{ml} .1 \mathrm{H}) .2 .14-2.11(\mathrm{~m} .1 \mathrm{H}) .1 .49(\mathrm{~s}$. 9 H): ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.7$. 137.2, 120.7.81.9. 79.0. 75.1. 69.8. 46.3, 32.6. 28.7; IR (film. cm^{-1}) 2976. 2930. 1706. 1404. 1368. 1251, 1168,1117 ; HRMS: $m z$ caled. for $\mathrm{C}_{12} \mathrm{H}_{3} \div \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})^{-}: 258.1341$: found: 258.1343 .
