DOI QR코드

DOI QR Code

Structural and Morphological Behavior of TiO2 Rutile Obtained by Hydrolysis Reaction of Na2Ti3O7

  • Lee, Seoung-Soo (College of Environment and Applied Chemistry, Kyung Hee University) ;
  • Byeon, Song-Ho (College of Environment and Applied Chemistry, Kyung Hee University)
  • Published : 2004.07.20

Abstract

The structural transformation behavior of $Na_2Ti_3O_7$ by hydrolysis was investigated in mild and strong acidic aqueous medium. Compared with $K_2Ti_4O_9,\;Na_2Ti_3O_7$ exhibits quite different structural and morphological transformation behavior despite their similar layered structural characteristics. $TiO_2(B)$ obtained by heat treatment of $H_2Ti_3O_7\;at\;350^{\circ}C$ transforms to rutile $H_2Ti_3O_7\;at\;900^{\circ}C$. This temperature is much lower than $1200{\circ}C$, the temperature for anatase to rutile transition when $K_2Ti_4O_9$ is used as a starting titanate. A rectangular rod shape and size of $TiO_2(B)$ particles obtained from $Na_2Ti_3O_7$ is also different from a fibrous structure of $TiO_2(B)$ prepared using $K_2Ti_4O_9$. Rutile crystals of 100 nm diameter with a corn-like morphology and large surface area are directly obtained when the hydrolysis of $Na_2Ti_3O_7$ is carried out at $100^{\circ}C$ in a strong acid solution. The structure of starting titanates and the hydrolysis conditions are an important factor to decide the particle size and morphology of $TiO_2(B)\;and\;TiO_2$.

Keywords

References

  1. Andersson, S.; Wadsley, A. D. Nature 1960, 187, 499. https://doi.org/10.1038/187499a0
  2. Berry, K. L.; Aftandilian, V. D.; Gilbert, W. W.; Meibohm, H. P.; Young, H. S. J. Inorg. Nucl. Chem. 1960, 14, 231. https://doi.org/10.1016/0022-1902(60)80263-1
  3. Andersson, S.; Wadsley, A. D. Acta Chem. Scand. 1961, 15, 663. https://doi.org/10.3891/acta.chem.scand.15-0663
  4. Andersson, S.; Wadsley, A. D. Acta Cryst. 1961, 14, 1245. https://doi.org/10.1107/S0365110X61003636
  5. Andersson, S.; Wadsley, A. D. Acta Cryst. 1962, 15, 194. https://doi.org/10.1107/S0365110X62000511
  6. Izawa, H.; Kikkawa, S.; Koizumi, M. J. Solid State Chem. 1987, 69, 336. https://doi.org/10.1016/0022-4596(87)90091-0
  7. Nakato, T.; Kusunoki, K.; Yoshizawa, K.; Kuroda, K.; Kaneko, M. J. Phys. Chem. 1995, 99, 17896. https://doi.org/10.1021/j100051a015
  8. Sasaki, T.; Izumi, F.; Watanabe, M. Chem. Mater. 1996, 8, 777. https://doi.org/10.1021/cm950463h
  9. Cheng, S.; Wang, T.-C. Inorg. Chem. 1989, 28, 1283. https://doi.org/10.1021/ic00306a016
  10. Kondo, J. N.; Shibata, S.; Ebina, Y.; Domen, K.; Tanaka, A. J. Phys. Chem. 1995, 99, 16043. https://doi.org/10.1021/j100043a051
  11. Sasaki, T.; Komatsu, Y.; Fujiki, Y. Chem. Lett. 1981, 957.
  12. Behrens, E. A.; Sylvester, P.; Clearfield, A. Environ. Sci. Tech. 1998, 32, 101. https://doi.org/10.1021/es9704794
  13. Dion, M.; Piffard, Y.; Tournoux, M. J. Inorg. Nucl. Chem. 1978, 40, 917. https://doi.org/10.1016/0022-1902(78)80175-4
  14. Sasaki, T.; Watanabe, M.; Hashizume, H.; Yamada, H.; Nakazawa, H. J. Am. Chem. Soc. 1996, 118, 8329. https://doi.org/10.1021/ja960073b
  15. Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. J. Phys. Chem. 1993, 97, 11802. https://doi.org/10.1021/j100147a038
  16. Kudo, A.; Sakata, T. J. Mater. Chem. 1993, 3, 1081. https://doi.org/10.1039/jm9930301081
  17. Kudo, A.; Kondo, T. J. Mater. Chem. 1997, 7, 777. https://doi.org/10.1039/a606297k
  18. Ogura, S.; Kohno, M.; Sato, K.; Inoue, Y. J. Mater. Chem. 1998, 8, 2335. https://doi.org/10.1039/a805172k
  19. Betz, G.; Tributsch, H.; Marchand, R. J. Appl. Electrochem. 1984, 14, 315. https://doi.org/10.1007/BF01269931
  20. Yin, S.; Uchida, S.; Fujishiro, Y.; Aki, M.; Sato, T. J. Mater. Chem. 1999, 9, 1191. https://doi.org/10.1039/a808064j
  21. Feist, T. P.; Davies, P. K. J. Solid State Chem. 1992, 101, 275. https://doi.org/10.1016/0022-4596(92)90184-W
  22. Marchand, R.; Brohan, L.; Tournoux, M. Mat. Res. Bull. 1980, 15, 1129. https://doi.org/10.1016/0025-5408(80)90076-8

Cited by

  1. Ceramics vol.120, pp.1, 2010, https://doi.org/10.1080/10584587.2010.503799
  2. whiskers vol.50, pp.95, 2014, https://doi.org/10.1039/C4CC06411A
  3. Addition of TiO2 nanowires in different polymorphs for dye-sensitized solar cells vol.5, pp.2, 2004, https://doi.org/10.2478/s11532-007-0001-4
  4. Dielectric-Spectroscopic and ac Conductivity Investigations on Manganese Doped Layered Na1.9Li0.1Ti3O7 Ceramics vol.53, pp.1, 2004, https://doi.org/10.5012/jkcs.2009.53.1.042