$\mathrm{Pd}(\mathrm{OAc})_{2}$-Catalyzed Isomerization of Acetates of the Baylis-Hillman Adducts

Jeong Beom Park, Seung Ho Ko, Bong Gyu Kim, Wan Pyo Hong, and Kee-Jung Lee*

Department of Chemical Engineering, Hanvang Lhnversity, Seoul 133-791, Korea
Received September 19, 2003
Key Words : Palladium. Isomerization. Acetates of Baylis-Hillman adducts

Since the pioneering work of Baylis and Hillman ${ }^{1}$ the 1.4diazabicyclo[2.2.2]octane (DABCO)-catalyzed coupling of aldehydes with activated alkenes to give allylic alcohols is largely employed ${ }^{-}$and continues to stimulate research due to its immense synthetic potential. Among them, stereoselective isomerization of acetates of the Baylis-Hillman adducts catalyzed by trimethylsilyl trifluoromethanesulfonate. ${ }^{3}$ trifluoroacetic acid. ${ }^{+}$benzyltrimethy lammonium fluoride. ${ }^{5}$ DABCO^{6} and montmorillonite K 10 clay ${ }^{7}$ has appeared in the literature. As a part of our research program aimed at the development of the Baylis-Hillman reaction. particularly for the construction of heterocycles. ${ }^{8}$ we decided to investigate the $\mathrm{Pd}(\mathrm{OAc})$-catalyzed stereoselective isomerization of the acetates of the Baylis-Hillman adducts.

The palladium-catalyzed rearrangement of ally lic esters is known and explained by the coordination of alkene to PdX 2 to give the cyclic intermediate. The intermediate can reverse the oxypalladation in either direction and the product is whichever allylic acetate has the more substituted alkene as shown in Scheme $1 .{ }^{9}$

Our results are summarized in the Table $1 .{ }^{10}$ In general. the yields are moderate to excellent ranging from 65 to 83%. The following procedure for converting $\mathbf{1}$ into 2 is representative: the mixture of acetate 1c $(560 \mathrm{mg}, 2.08$ mmol), triethylamine (630 mg .6 .24 mmol) and the catalyst system comprising palladium acetate ($23 \mathrm{mg} .5 \mathrm{~mol} \%$) and triphenylphosphine ($109 \mathrm{mg} .20 \mathrm{~mol} \%$) was stirred in acetonitrile (15 mL) under nitrogen at $80^{\circ} \mathrm{C}$. After 1 hour. the reaction mixture was diluted with brine and extracted with ether. The ethereal solution was washed twice with brine. dried and the solvent was exaporated. Flash chromatography of the residue gave 464 mg of 2 c (83% y ield).

Concerning the stereoselectivity of the isomerzation of representative methyl 3-acetoxy-3-aryl-2-methylenepropanoates $\mathbf{1 a - g}$. methyl 2-(acetoxymethyl)-3-arylprop-2-enoates $\mathbf{2 a - g}$ were obtained in $100 \%(L)$-stereoselectivity as evi-

Table 1. $\mathrm{Pd}(\mathrm{OAch}$-Catalyzed Isomerization of Acetates of the Baylis-Hillman Adducts

Substrate	Ar		Product	Time (h)	Yield ${ }^{\text {a }}$ (\%)
1a	$\mathrm{C}_{6} \mathrm{H}_{5}$	COOMe	$2 a^{3}$	3	73
1b	$2-\mathrm{ClC}_{6} \mathrm{H}_{+}$	coome	2 b	1	81
1c	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	COOMe	$2 \mathrm{c}^{3}$	1	83
1d	$2-\mathrm{BrC}_{6} \mathrm{H}_{+}$	COOMe	2d	1	79
1e	$2-\mathrm{IC}_{6} \mathrm{H}_{4}$	coome	2 e	1	78
1f	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{+}$	COOMe	2 f	2	65
1 g	$2-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{+}$	COOMe	$2 \mathrm{~g}^{3}$	1	80
1h	$\mathrm{C}_{6} \mathrm{H}_{5}$	CN	$2{ }^{3}$	2	75
1 i	2. $\mathrm{ClC}_{6} \mathrm{H}_{+}$	CN	2 i	1	62 (10)
1j	4. $\mathrm{ClC}_{6} \mathrm{H}_{4}$	CN	$2{ }^{3}$	2	76 (7)
1k	$2 \cdot \mathrm{BrC}_{6} \mathrm{H}_{+}$	CN	$2 k$	1	65 (12)
11	$2 \cdot \mathrm{TC} \mathrm{F}_{6} \mathrm{H}_{4}$	CN	21	1	61 (14)
1 m	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{+}$	CN	2 m	2	61 (10)
1 n	$2 \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{+}$	CN	$2 \mathrm{n}^{3}$	1	58 (12)

${ }^{{ }^{4} \text { Isolated yield. Values in parentheses are those for (} Z \text {)-isomer. }}$
denced by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral analyses compared with those of the known compounds. ${ }^{3}$ On the other hand. 3-acetoxy-3-aryl-2-methylenepropanenitriles $\mathbf{1 h}-n$ gave a mixture of ($2 L$)- and (2Z)-2-(acetoxymethyl)-3-arylprop-2enenitriles $\mathbf{2 h} \mathbf{- n}$. and (E)-compounds having the aryl group cis to the nitrile group were obtained as major products. The assignment of the (E) - and (Z)-stereochemistry was based on the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR chemical shift values of the allylic methylene carbon (e.g. for 2 i. 64.45 v. 59.53) in comparison with the published ones. ${ }^{3}$

A possible explanation for the reversal of stereochemical directive effects of the nitrile group with respect to the ester group is that the products are those of themodynamic

1h-n

(E)-2h-n

(Z)-2h-n
control in all these cases. ${ }^{3}$ That is, the more sterically demanding ester group requires a particular conformation for optimal conjugation compared to the slim cyano group with local cylindrical symmetry. Thus, the molecules 1 with ester group provide trisubstituted alkenes 2 having the aryl group troms to the ester group, whereas those with nitrile group produce trisubstituted alkenes 2 having the aryl group cis to the nitrile group exclusively (Scheme 2).
In conclusion, we have stereoselectively transformed acetates of the Baylis-Hillman adducts under the catalytic influence of $\mathrm{Pd}(\mathrm{OAc})$: into thermodynamically stable trisubstituted alkenes

Reference and Notes

1. Baylis. A. B.; Hillman, M. E. D. German Patent $2155113.1972 ;$ Chem. Abst. 1972, 77, 34174q.
2. (a) Drewes. S. E.: Roos. G. H. P. Tetrahedron 1988. 44. 4653. (b) Basavaiah. D.: Rao. P. D.: Hyma. R. S. Tetrahedron 1996.52 8001. (c) Ciganek, E. In Organic Reactions'; Paquette. L. A., Ed.: Wilev: New York, 1997; Vol. 51 , pp 201-350. (d) Kim, J. N.: Lee, K. Y. Curf. Org. Chem. 2002. 6. 627. (e) Chung, Y. M.: Lee, H. J: Hwang. S. S.: Kim. J. N. Buhl. Koream Chem. Soc. 2001, 22. 799 and references cited therein. (f) Lee. H. J.: Kim. T. H.: Kim. J. N. Bull. Korean Chem. Soc. 2001. 22. 1059 and references cited therein.
3. Basavaiah. D.: Muthukumaran, K.: Sreenitasulu. B. Syhthesis 2000, 545
4. Kim. H. S.: Kim. T. Y.: Lee. K. Y.: Chung. Y. M.: Lee. H. J.: Kim. J. N. Tetrahedron Lett. 2000. 4. 2613.
5. Foucaud. A.: El Guemmount. F. Bull. Soc. Chim. Fr. 1989. 403.
6. Mason, P. H.: Emslie, N. D. Tetrahedron 1994, $50,12001$.
7. (a) Shammgam. P: Singh. P. R. Symett 2001. 1314. (b) Shamugam, P; Rajasingh. P. Chem. Lett. 2002. 1212.
8. (a) Song. Y. S.: Lee, C. H.: Lee. K.-J. J. Heterocychic (Chem. 2003. 40. in press. (b) Lee. C. H.: Song. Y. S.: Cho. H. I.: Yang. J. W.: Lee. K.-J. J. Heteroctchic Chem. 2003. submitted.
9. (a) Walker. W. E.: Manvik, R. M; Atkins, K. E.: Farmer. M. L. Terahedron Lett. 1970. 26. 3817. (b) Tsuji. J.: Murata, Y.' Kato. H.: Tsukahara, Y.: Kinoshita. H.: Kotake. H. Chem. Lett. 1985. 931. (c) Grieco. P. A.: Takigawa. T.: Bongers. S. L.: Tanaka. H J. Am. Chem Soc. 1980.102. 7587.
10. Spectroscopic data of new compounds 2 are as follows. Compound 2b: oil' IR (neat) $1741,1724.1636 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.45(\mathrm{~m}$. $4 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}){ }^{18} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 20.85. 52.37 .59 .29. 126.81, 128.57. 129.68. 130.14. 130.52, 132.86. 134.19.142.12. $166.65,170.49$.
Compound 2d: oil: IR (neat) 1740. 1724. $1638 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.40(\mathrm{~m}$, $3 \mathrm{H}) .7 .62-7.65(\mathrm{~m}, 1 \mathrm{H}) .7 .99(\mathrm{~s}, 1 \mathrm{H}):{ }^{11} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.87$, 52.41. 59.27. 124.08, 127.40. 128.37, 130.20. 130.61. 132.83. 134.78. 144.23, 166.65, 170.49.

Compound 2e: mp $65-66^{\circ} \mathrm{C}:$ IR $(\mathrm{KBr}) 1736,1704.1627 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}\right) \delta 2.07(\mathrm{~s} .3 \mathrm{H}) .3 .88(\mathrm{~s} .3 \mathrm{H}) .4 .80(\mathrm{~s} .2 \mathrm{H}) .7 .04-7.41$ (m. 3H). 7.87 (s. IH). $7.89-7.92$ (m. IH). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}$) δ 20.78. 52.36. 59.13. 99.06. 127.91. 128.15. 129.49. 130.41. $138.32,139.15,147.98,166.53,170.38$.
Compound 2f: $\mathrm{mp} 92-94^{\circ} \mathrm{C}$, IR (KBr) $1719,1616 \mathrm{~cm}^{-1},{ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.02(\mathrm{~s} .3 \mathrm{H}) .3 .88(\mathrm{~s} .3 \mathrm{H}) .4 .73(\mathrm{~s} .2 \mathrm{H}) .7 .34-7.71(\mathrm{~m}$. $3 \mathrm{H}) .8 .20-8.22(\mathrm{~m} .1 \mathrm{H}) .8 .23(\mathrm{~s} .1 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.79$. 52.49. 58.99. 125.06. 128.12. 129.89. 130.59. 130.85. 133.83. 142.16. 147.34. 166.23. 170.37.

Compound 2i: (E)-isomer: oil; \mathbb{R} (neat) $2219,1747,1626 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H} N \mathrm{MR}\left(\mathrm{CDCl}_{3}\right) \delta 2.16(\mathrm{~s}, 3 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.46(\mathrm{~m} .3 \mathrm{H})$. $7.59(\mathrm{~s} .1 \mathrm{H}) .7 .99-8.02(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }^{3}\right) \delta 20.55$. 64.45. 109.17. 116.27. 127.11. 129.05. 129.72. 130.81. 131.71. 134.31. 143.15. 169.95. (Z)-isomer: oil: IR (neat) 2222. 1747. $1625 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s} .3 \mathrm{H}) .4 .77(\mathrm{~s} .2 \mathrm{H}) .7 .23-$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.58 .59 .53$. $112.39,117.70 .126 .96 .130 .08 .131 .07,131.35,131.74,134.01$. 144.99, 170.09 .

Compound 2j: (Z)-isomer: oil: IR (neat) $2219.1750 .1630 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s} .3 \mathrm{H}) .4 .85(\mathrm{~s} .2 \mathrm{H}) .7 .25(\mathrm{~d} .2 \mathrm{H} . J=8.3$ $\mathrm{Hz}) .7 .27(\mathrm{~s} .1 \mathrm{H}) .7 .43$ (d. $2 \mathrm{H} . j=8.3 \mathrm{~Hz}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 20.95, 59.74. 111.38. 11844, 129.62. 130.89, 131.44. 13695. $146.89,170.50$.
Compound $2 \mathbf{k}:(E)$-isomer: oil: IR (neat) $2220.1746,1627 \mathrm{~cm}^{-1}$, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s} .3 \mathrm{H}) .4 .85(\mathrm{~s} .2 \mathrm{H}) .7 .27-7.44(\mathrm{~m} 1.2 \mathrm{H})$. $7.54(\mathrm{~s} .1 \mathrm{H}) .7 .63-7.66$ (m1. 1 H$) .7 .95-7.97$ (m. 1H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.56 .64 .32$. 109.30. 116.19. 124.46. 127.72. 129.36. $131.78,132.61 .133 .01,145.67 .169 .98$. (Z)-isomer: oil: IR (neat) 2222. 1748. $1630 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.14(\mathrm{~s}, 3 \mathrm{H}) .4 .75(\mathrm{~s}$. $2 \mathrm{H}) .7 .22-7.38(\mathrm{~m} .3 \mathrm{H}), 7.54(\mathrm{~s} .1 \mathrm{H}) .7 .64-7.67(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCI $) \delta 20.62 .59 .54$. 112.21. 117.70. 123.83. 127.58. 130.16. 131.46. 132.96. 133.23. 147.16. 170.15.

Compound 21: (E)-isomer: oil: IR (neat) $2220.1746 .1626 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 2.18(\mathrm{~s}, 3 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 7.09-7.14(\mathrm{~m} .1 \mathrm{H})$. $7.38(\mathrm{~s} .1 \mathrm{H}) .7 .42-7.47(\mathrm{~m} .1 \mathrm{H}), 7.86-7.93(\mathrm{~m} .2 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 20.67,64.15,99.94 .109 .35,116.12 .128 .60,129.11$. 131.73. 136.04. 139.56. 150.15. 170.04. (Z)-isomer: oil: \mathbb{R} (neat) 2221. 1746. $1625 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s} .3 \mathrm{H}) .4 .72(\mathrm{~s}$. 2H). $7.69-7.23$ (m1. 2H). $7.38-7.42$ (m1. 1 H). 7.43 (s. 1H). $7.92-7.95$ (m. 1H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 20.62,59.47 .98 .69 .111 .86,117.63$. $128.44,129.63,131.24,136.53,139.65,151.00,170.15$.
Compound 2m: (E)-isomer, oil: IR (neat) 2222. 1746. 1638, 1617 cml^{-1}. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{~s} .3 \mathrm{H}) .4 .88(\mathrm{~s} .2 \mathrm{H}) .7 .62-7.82(\mathrm{ml}$. $3 \mathrm{H}) .7 .80(\mathrm{~s} . \mathrm{IH}) .8 .23-8.25(\mathrm{~mm} .1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.61$. 63.66. 111.07. 115.69. 125.18. 128.90. 130.79. 130.96. 134.26. 143.99, 146.95, 170.01. (Z)-isomer; oil; IR (neat) 2224, 1746. 1638. $1617 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.12(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H})$. $7.36-7.76(\mathrm{~m} .3 \mathrm{H}) .7 .85(\mathrm{~s} .1 \mathrm{H}), 8.27-8.30(\mathrm{~d} .1 \mathrm{H} . J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }^{\text {) }} \delta \delta_{20.54 . ~ 59.41 . ~ 111.83 . ~ 117.31 . ~ 125.50 . ~ 128.37 . ~}^{\text {2 }}$ 130.74. 130.86. 134.09. 145.52. 146.79. 170.06.

Compound 2n: (Z)-isomer: oil: IR (neat) $2221.1747 .1626 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s} .3 \mathrm{H}), 4.77(\mathrm{~s} .2 \mathrm{H}) .7 .08-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.72 .20 .53$. $59.55,110.99,118.12,126.00,128.62$. 130.17. 130.50. 131.68. 136.91. 147.44. 170.05.

