DOI QR코드

DOI QR Code

Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

  • Song, Kyu-Seok (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Cha, Hyung-Ki (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Kim, Duk-Hyeon (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Min, Ki-Hyun (Department of Physics, Chungbuk National University)
  • Published : 2004.01.20

Abstract

The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ~1,500 for the ytterbium.

Keywords

References

  1. Lasers in Analytical Atomic Spectroscopy, Sneddon, J.; Thiem, T.L.; Lee, Y. I., Eds.; VCH publishers Inc.: 1997.
  2. Brinckerhoff, W. B.; Managadze, G. G.; McEntire, R. W.; Cheng,A. F.; Green, W. J. Rev. Sci. Instrum. 2000, 71, 536. https://doi.org/10.1063/1.1150237
  3. Tanaka, K.; Shirai, N. Appl. Surf. Sci. 1998, 135, 163. https://doi.org/10.1016/S0169-4332(98)00269-4
  4. Beekman, D. W.; Thonnard, N. Inst. Phys. Conf. Ser. No. 94;1988; Section 3, p. 163.
  5. King, L. A.; Gornushkin, I. B.; Pappas, D.; Smith, B. W.;Winefordner, J. D. Spectrochim. Acta Part B 1999, 54, 1771. https://doi.org/10.1016/S0584-8547(99)00140-8
  6. Song, K.; Hong, K. H.; Yang, M.; Cha, H.; Lee, J. J. Kor. Phys.Soc. 1999, 35, 217.
  7. Piyadasa, C. K. G.; Hakansson, P.; Ariyaratne, T. R. Rapid Comm.Mass. Spectrom. 1999, 13, 620. https://doi.org/10.1002/(SICI)1097-0231(19990415)13:7<620::AID-RCM532>3.0.CO;2-F
  8. Specht, A. A.; Blades, M. W. J. Am. Soc. Mass Spectrom. 2003,14, 562. https://doi.org/10.1016/S1044-0305(03)00143-0
  9. Koo, Y. M.; Choi, Y. K.; Lee, K. H.; Jung, K.W. Bull. KoreanChem. Soc. 2002, 23, 309. https://doi.org/10.5012/bkcs.2002.23.2.309
  10. Koumenis, H. L.; Vestal, M. L.; Yergey, A. L.; Abrams, S.;Deming, S. N.; Hutchens, T. W. Anal. Chem. 1995, 67, 4557. https://doi.org/10.1021/ac00120a020
  11. Piesonero, J.; Costa, J. M.; Pereiro, R.; Bordel, N.; Sanz-medel, A.J. Anal. At. Spectrom. 2001, 16, 1253. https://doi.org/10.1039/b105676j
  12. Donohue, D. L.; Petek, M. Anal. Chem. 1991, 63, 740. https://doi.org/10.1021/ac00007a017
  13. Song, K.; Cha, H.; Lee, J.; Kolpakov, I. Microchem. J. 1997, 57,265. https://doi.org/10.1006/mchj.1996.1472
  14. Song, K.; Cha, H.; Lee, J. J. Anal. Atom. Spectrom. 1998, 13,1207. https://doi.org/10.1039/a803527j
  15. Wendt, K.; Passler, G.; Trautmann, N. PhysicaScripta 1995, T58,104.
  16. Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. Anal. Chem. 2002,74, 1637. https://doi.org/10.1021/ac010979m
  17. Figueroa, M. D.; Torres, O.; Russell, D. H. Anal. Chem. 1998, 70,4527. https://doi.org/10.1021/ac9805605
  18. Dai, Y.; Whittal, R. M.; Li, L. Anal. Chem. 1999, 71, 1087. https://doi.org/10.1021/ac980684h
  19. Sdorra, W.; Brust, J.; Niemax, K. Mikrochim. Acta 1992,108, 1. https://doi.org/10.1007/BF01240366
  20. Geertsen, C.; Briand, A.; Chartier, F.; Lacour, J.-L.; Mauchien, P.;Mermet, J.-M.; Sjostrom, S. J. Anal. At. Spectrom. 1994, 9, 17. https://doi.org/10.1039/ja9940900017
  21. St-Onge, L.; Detalle, V.; Sabsabi, M. Spectrochim. Acta part B2002, 57, 121. https://doi.org/10.1016/S0584-8547(01)00358-5

Cited by

  1. Iron Oxide Nanomatrix Facilitating Metal Ionization in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry vol.83, pp.24, 2011, https://doi.org/10.1021/ac2017184
  2. Current literature in mass spectrometry vol.39, pp.10, 2004, https://doi.org/10.1002/jms.711
  3. Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples vol.26, pp.2, 2004, https://doi.org/10.5012/bkcs.2005.26.2.303
  4. Isotopic analysis of metallic and coated microparticles by laser ablation time-of-flight mass spectrometry (LA-TOF-MS) vol.95, pp.1, 2004, https://doi.org/10.1016/j.microc.2009.09.011
  5. Characterization of a Membrane Interface for Analysis of Air Samples Using Time-of-flight Mass Spectrometry vol.31, pp.10, 2004, https://doi.org/10.5012/bkcs.2010.31.10.2791
  6. An investigation on the patina of ancient bronze coins vol.169, pp.5, 2014, https://doi.org/10.1080/10420150.2014.910209