DOI QR코드

DOI QR Code

Selective Reduction of the Nitro-group Using Co2(CO)8-H2O

  • Lee, Hee-Yoon (Center for Design and Synthesis, Department of Chemistry & BK21 School of Molecular Science, Korea Advanced Institute of Science and Technology) ;
  • An, Mi-Hyun (Center for Design and Synthesis, Department of Chemistry & BK21 School of Molecular Science, Korea Advanced Institute of Science and Technology)
  • Published : 2004.11.20

Abstract

Keywords

References

  1. Lee, H.-Y.; An, M. Tetrahedron Lett. 2003, 44, 2775. https://doi.org/10.1016/S0040-4039(03)00462-3
  2. Lee, H. Y.; An, M.; Sohn, J.-H. Bull. Korean Chem. Soc. 2003, 24, 539. https://doi.org/10.5012/bkcs.2003.24.5.539
  3. Hudlicky, M. Reductions in Organic Chemistry, 2nd Ed.; ACS Monograph, 1996.
  4. Kabalka, G. W.; Varma, R. S. Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 8, p 363.
  5. Scriven, E. F. V. Chem. Rev. 1988, 88, 297. https://doi.org/10.1021/cr00084a001
  6. Siegrist, U.; Baumeister, P.; Blaser, H. U.; Studer, M. Chem. Ind. 1998, 75, 207.
  7. Nishmura, S. Bull. Chem. Soc. Jpn. 1961, 34, 32. https://doi.org/10.1246/bcsj.34.32
  8. Adkins, H.; Pavlic, A. A. J. Am. Chem. Soc. 1930, 52, 4349. https://doi.org/10.1021/ja01374a023
  9. Adkins, H.; Connor, R. J. Am. Chem. Soc. 1931, 53, 1091. https://doi.org/10.1021/ja01354a041
  10. Broadbent, H. S.; Slaugh, L. H.; Jarvis, N. L. J. Am. Chem. Soc. 1954, 76, 1519. https://doi.org/10.1021/ja01635a016
  11. Mosby, W. L. J. Org. Chem. 1959, 24, 421. https://doi.org/10.1021/jo01085a607
  12. Cho, Y. S.; Jun, B. K.; Kim, S.; Cha, J. H.; Pae, A. N.; Koh, H. Y.; Chang, M. H.; Han, S.-Y. Bull. Korean Chem. Soc. 2003, 24, 653. https://doi.org/10.5012/bkcs.2003.24.5.653
  13. Sonavane, S. U.; Jayaram, R. V. Synth. Commun. 2003, 33, 843. https://doi.org/10.1081/SCC-120016330
  14. Yasuhara, A.; Kasano, A.; Sakamoto, T. J. Org. Chem. 1999, 64, 2301. https://doi.org/10.1021/jo981935p

Cited by

  1. Platinum Nanoparticles Supported on Nitrogen-doped Carbon Nanofibers as Efficient Poisoning Catalysts for the Hydrogenation of Nitroarenes vol.3, pp.10, 2011, https://doi.org/10.1002/cctc.201100135
  2. Highly selective reduction of nitroarenes by iron(0) nanoparticles in water vol.48, pp.64, 2012, https://doi.org/10.1039/c2cc30999h
  3. -Acylanthranilamides Stable? vol.7, pp.5, 2016, https://doi.org/10.1021/acs.jpclett.5b02881
  4. -nosyl-protected 3-azabicyclo[4.3.0]nonen-8-one by an aniline- and nitrobenzene-mediated Pauson–Khand cyclization vol.47, pp.17, 2017, https://doi.org/10.1080/00397911.2017.1337151
  5. A highly effective Ag–RANEY® nickel hybrid catalyst for reduction of nitrofurazone and aromatic nitro compounds in aqueous solution vol.7, pp.48, 2017, https://doi.org/10.1039/C7RA04343K
  6. Synthesis of Ultrafine Silver Nanoparticles on the Surface of Fe3O4@SiO2@KIT-6-NH2 Nanocomposite and Their Application as a Highly Efficient and Reusable Catalyst for Reduction of Nitrofurazone and Aromatic Nitro Compounds Under Mild Conditions pp.1572-879X, 2018, https://doi.org/10.1007/s10562-018-2611-1
  7. Effect of conformational flexibility on photophysics of bis-coumarins vol.20, pp.21, 2018, https://doi.org/10.1039/C8CP01084F
  8. Selective Reduction of the Nitro-Group Using Co2(CO)8?H2O. vol.36, pp.13, 2005, https://doi.org/10.1002/chin.200513046
  9. Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for Selective Reduction of Nitro Compounds vol.350, pp.6, 2008, https://doi.org/10.1002/adsc.200800018
  10. Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update vol.1, pp.2, 2009, https://doi.org/10.1002/cctc.200900129
  11. A Facile and Efficient Reduction of Nitroarenes with NiCl2·6H2O/Indium System vol.27, pp.8, 2004, https://doi.org/10.5012/bkcs.2006.27.8.1115
  12. Rapid, efficient and selective reduction of aromatic nitro compounds with sodium borohydride and Raney nickel vol.274, pp.1, 2004, https://doi.org/10.1016/j.molcata.2007.05.020
  13. Metal Nanoparticles Supported on Carbon Nanofibers: Synthesis and Application for the Hydrogenation Reactions vol.67, pp.7, 2009, https://doi.org/10.5059/yukigoseikyokaishi.67.724
  14. Research Spotlight: Microwave chemistry enabling the synthesis of biologically relevant amines vol.2, pp.2, 2004, https://doi.org/10.4155/fmc.09.114
  15. Microwave-Assisted Rapid and efficient Reduction of Aromatic Nitro Compounds to Amines with Propan-2-ol over Nanosized Perovskite-type SmFeO3 powder as a New Recyclable Heterogeneous Cataly vol.35, pp.1, 2004, https://doi.org/10.3184/174751911x12964930076647
  16. Alternative method for the reduction of aromatic nitro to amine using TMDS-iron catalyst system vol.67, pp.10, 2004, https://doi.org/10.1016/j.tet.2010.12.070
  17. Perovskite-type ferromagnetic BiFeO3 nanopowder: a new magnetically recoverable heterogeneous nanocatalyst for efficient and selective transfer hydrogenation of aromatic nitro compounds into aromatic vol.9, pp.6, 2012, https://doi.org/10.1007/s13738-012-0149-5
  18. Efficient and Selective Reduction of Aromatic Nitro Compounds to Aromatic Amines by NbCl5/Indium System vol.33, pp.9, 2004, https://doi.org/10.5012/bkcs.2012.33.9.2851
  19. Polymethylhydrosiloxane derived palladium nanoparticles for chemo- and regioselective hydrogenation of aliphatic and aromatic nitro compounds in water vol.4, pp.43, 2004, https://doi.org/10.1039/c4ra01333f
  20. Chemoselective reduction of nitro and nitrile compounds using an Fe3O4-MWCNTs@PEI-Ag nanocomposite as a reusable catalyst vol.10, pp.6, 2004, https://doi.org/10.1039/c9ra09561f
  21. Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work? vol.92, pp.2, 2004, https://doi.org/10.1515/pac-2019-0111
  22. Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work? vol.92, pp.2, 2004, https://doi.org/10.1515/pac-2019-0111