Synthesis of Tetrahydrocarbazole Derivatives as Potent β_{3}-Adrenoceptor Agonists

Jae Du Ha, Seung Kyu Kang, Hyae-Gyeong Cheon, and Joong-Kwon Choi*
Medicinal Science Division, Korea Research Institute of Chemical Technologv, Daejeon 305-600, Korea Recenved JuIV 27, 2004

Abstract

A series of 2-(3-chlorophenyl)-2-hydroxyethylamine derivatives containing a tetrahydrocarbazole linker were prepared and evaluated for their β_{3}-adrenoceptor agonistic activity. Several compounds showed potency comparable to CL-316243.

Key Words: β_{3}-Adrenoceptor, Tetrahydrocarbazole. Arylethanolanune. Antiobesty

Introduction

As a subclass of β-adrenoceptors, ${ }^{1} \beta_{5}$-adrenoceptor $\left(\beta_{3}\right.$ $A R)^{2}$ is found on the cell surface of both white and brown adipocytes and mediates various metabolic processes such as lipolysis and thermogenesis. ${ }^{3}$ Activation of human $\beta_{3}-A R$ results in an increase of c-AMP level in adipocytes, leading to an elevation of metabolic rate. Therefore. discovery of a human β_{3}-AR agonist would be an attractive approach to the treatment of human disease states. such as obesity and type II diabetes. ${ }^{4}$ Although many early $\beta_{3}-\mathrm{AR}$ agonists such as BRL $37344,{ }^{5} \mathrm{CL}-316243 .{ }^{6}$ AJ 9677, ${ }^{7}$ and SR58611A ${ }^{8}$ were tested in clinical trials, these β_{5}-AR agonists suffered a poor potency or substantial $\beta_{1}-A R$ and $\beta_{2}-A R$ mediated side effects in human. Recently a number of laboratories have been developing new classes of $\beta_{3}-\mathrm{AR}$ agonists, such as Solabegron ${ }^{9}$ and $\mathrm{N}-5984 .{ }^{\text {II }}$ having much higher potency and less side effects than the early $\beta_{s}-\mathrm{AR}$ agonists. However. those compounds still need improvement, and new $\beta_{3}-A R$
agonists as viable antiobestic or antidiabetic agents with improved potency are pursued.

Most of $\beta_{3}-\mathrm{AR}$ agonists tested in clinical trials possess the 2-(3-chlorophenyl)-2-hydroxyethylamino group in the lefthand side and a carbosylic acid or its isostere in the righthand side, which is considered to be critical for showing β_{5} AR agonistic activity, and a variety of aromatic ring systems. ${ }^{11}$ such as phenyl, pyridine, ${ }^{12}$ indole. tetrahydronaphthalene, and benzodioxine. were used as a linker of $\beta_{3}-\mathrm{AR}$ agonists. With considering those. we decided to test a tetrahydrocarbazole moiety as a linker for a new potent β_{3} - AR agonist. In this paper we describe the synthesis and structure-activity study of a variety of 2-(tetrahydrocarbazol-3-ylamino)-1-(3chlorophenyl)ethanol derivatives, leading to the discovery of a new and potent β_{3}-AR agonist.

Chemistry

The general synthetic route to tetrahydrocarbazole deriva-

CL-316243

SR-58611A

N-5984

AJ-9677

1

Figure 1

Scheme 1

[^0]

Scheme 2

Scheme 3
tives is shown in Scheme 1. The 3-(benzy loxycarbonyl-amino)-1.2.3.4-tetrahydrocarbazole derivatives 4 were prepared by following similar methods described in literatures. ${ }^{13}$

The synthesis began with a conmercially available 4aminocyclohexanol 2. which was treated with CbzCl and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. followed by oxidation with Jones reagent to give the cyclohexanone 3. Fisher cyclization of the cyclohexanone 3 with various aryl hydrazines in refluxing acetic acid gave the tetrahydrocarbazole derivatives $4 a-9$ (Scheme 1).
Synthesis of arylethanolamines $\mathbf{1 a} \mathbf{- g}$ was achieved as
described in Scheme 2. Cleavage of the Cbz group and methyl ether using BBr_{3} provided the corresponding 6 -aminotetrahydrocarbazol-3-ol (5). Then. amino group was protected with Boc group followed by alkylation of phenol with methyl bromoacetate and subsequent deprotection of Boc amino group using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ to furnish aminotetrahydrocarbazole 6. A catalytic hydrogenolysis of 4 a and tc-f using Pd / C provided the aminocarbazole derivatives 7a-e. For the synthesis of arylethanolamines $1 \mathrm{al}-\mathrm{g} .3$-aminotetrahydrocarbazole derivatives 5.6. and 7a-e were treated with an optically pure (R)-3-chlorostryrene oxide 8 in

Scheme 4

MeOH.

The arylethanolamines $\mathbf{1 h}-\mathrm{n}$ were prepared as outlined in Scheme 3. Coupling of the carboxylic acid $\mathbf{4 b}$ with various amines using EDCI and HOBT to afford the amides $9 \mathrm{a}-\mathrm{c}$. followed by a catalytic hydrogenolysis furnished aminotetrahydrocarbazole 10a-c. The carboxamide 9d was readily synthesized by the activation of the carboxylic acid using SOCl 2_{2}-DMF followed by addition of ammonia/water.
For the synthesis of $\mathbf{1 2 a}-\mathrm{b}$ and $\mathbf{1 3}$, the carbosylic acid 4b was subjected to Curtis rearrangement condition using SOCl2-DMF adduct as activating agent followed by heating in benzene to provide the isocyanate 11. Nucleophilic addition of EtOH or pyrrolidine to isocyanate 11 by heating in THF and a subsequent hydrogenolysis afforded the aminotetrahydrocarbazoles 12a-b. Hydrolysis of the isocyanate $\mathbf{1 1}$ in $2 N-\mathrm{HCl}$ afforded the 6-aminotetrahydrocarbazole. which was treated with methansulfonyl chloride followed by catalytic hydrogenolysis to give the sulfonamide 13. The arylethanolamines $1 \mathrm{~h}-\mathrm{n}$ were prepared by following the same method as described in Scheme 2.

The arylethanolamine 10 was prepared according to Scheme 4 . Heck reaction of 4 g with methyl acrylate using $\mathrm{Pd}(\mathrm{OAc})$) afforded the tetrahydrocarbazol acrylic ester 14 . Catalytic hydrogenation and hydrogenolysis followed by coupling with $\mathbf{8}$ afforded the arylethanolamine $\mathbf{1 0}$.

Screening Results

The arylethanolamines were tested for their in witro activity by using cell membrane expressing human $\beta_{3}-\mathrm{AR}$ (RB-HBETA ${ }_{3}$). ${ }^{14}$ and the results are summarized in Table 1. CL-316243 was also included as a reference. Due to the difference of assay conditions. CL-316243 exhibited a relatively lower agonistic activity than that of previously reported data. ${ }^{6}$
As shown in Figure 1. the carboxylic acid or its ester functionalities in the right-hand side of $\beta_{3}-\mathrm{AR}$ agonist is important for maintaining $\beta_{3}-\mathrm{AR}$ agonist activity and desirable physical properties. As expected. introduction of the methoxycarbonylmethoxy group ($\mathrm{R}=\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Me} .1 \mathrm{a}$) at $\mathrm{C}-6$ position of tetrahydrcarbazole displayed comparable in vitro activity ($\mathrm{IC}_{500}=1.2 \mu \mathrm{M}$) to that of CL-316243 ($\mathrm{IC}_{\mathrm{Si}}=1.17 \mu \mathrm{M}$). A simple tetrahydrocarbazole 1e without any substituent was about 5 -fold less potent compared with 1a. The compounds 1b. 1d. and if with non-carboxylate functionalities were quite active. especially, the fluoro substituted compound if was even more potent $\left(\mathrm{IC}_{s i 0}=0.79\right.$

Table 1. In vitro Activity for Tetrahydrocarbazole Derivatives

Compd	R	$\mathrm{IC}_{50}(\mu \mathrm{M})$	$\mathrm{Ki}(\mu \mathrm{M})$
1 a	$\mathrm{OCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	1.20	0.64
1b	OMe	1.28	0.55
1c	$\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	2.85	1.22
1d	F	0.79	0.34
1e	H	5.10	2.19
1 f	OH	1.37	0.58
1 g	CONHMe	2.58	1.10
1h	CONHPh	0.19	0.09
1 i	$\mathrm{CONHCH} \mathrm{H}_{2} \mathrm{CO}_{2} \mathrm{Me}$	0.40	0.17
1 j	CONH_{2}	0.64	0.27
1k	$\mathrm{CO}_{2} \mathrm{Et}$	0.21	0.09
11	$\mathrm{NHCO}_{2} \mathrm{Et}$	0.81	0.35
1m	NHCOpyrrolidine	24.93	10.69
1 n	$\mathrm{NHSO}_{2} \mathrm{Me}$	2.12	0.91
10	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$	6.68	2.86
CL-316243		1.17	0.62

$\mu \mathrm{M})$. Although the amide derivatives are known to be moderate isostere of carboxylic acid. we synthesized a variety of amide derivatives for evaluation. While the N methylamide 1 g showed poor activity, the activities of the amide $\mathbf{1 h}$. 1i. and $\mathbf{1 k}$ were significantly increased. To our delight. phenyl amide $\mathbf{1 h}$ was the most potent compound synthesized. which showed about 6 -fold higher potency compared to that of CL-316243. In terms of tether length modifications. comparison of the activities of compounds 1c. $\mathbf{1 k}$, and 10 indicated that increasing length to methylene or ethylene led to diminished activity compared to that of the directly attached carboxylate 1 k ($\mathrm{IC}_{3 i}=0.21 \mu \mathrm{M}$). We also synthesized a series of tetrahydrocarbazolyl amine derivatives. such as carbamate (11). urea (1m). and sulfonamide (1n). which all resulted in decreased activities.
In addition. all compounds were tested for their plasma glucose lowering activity in obese hyperglycemic obob mice. Among them. $5 \mathrm{mg} / \mathrm{kg} /$ day of 1 n significantly reduced plasma glucose concentrations in 3 days from $231 \mathrm{mg} / \mathrm{dl}$ to $176 \mathrm{mg} / \mathrm{dl}$. which was similar to that of CL-316243 (233 $\mathrm{mg} / \mathrm{dl}$ to $152 \mathrm{mg} / \mathrm{dl}){ }^{15}$

Conclusions

The synthesis and SAR studies of substituted tetrahydrocarbazole derivatives have been discussed. The tetrahydrocarbazoles 1 h and $\mathbf{1 k}$ showed about 5 -fold potency in vitro $\beta_{3}-\mathrm{AR}$ activity compared with CL-316243. A further pharmacological evaluation of these compounds is in progress.

Experimental Sections

(4-Oxocyclohexyl)carbamic acid benzyl ester (3). To a suspension of 4-aminocyclohexanol hydrochloride (5 g . $32.97 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(7 \mathrm{~g} .66 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(4: 1$. 100 mL) was dropwise added benzyl chloroformate (5.2 mL . 36.27 mmol) in THF (5 mL) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc and the organic layer was washed with water and brine. dried over MgSO_{4}. and concentrated to give a crude (4-hydroxycyclohexyl)carbamic acid benzyl ester (8.2 g) which was subjected to the next reaction without further purification.

To a solution of a crude (4-hydroxycyclohexyl)carbamic acid benzyl ester in acetone (100 mL) was added Jones' reagent ($5.2 \mathrm{~mL}, 41.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . then quenched by addition of isopropyl alcohol (4 mL). After stirring for 5 min . the mixture was filtered. and washed with acetone. The filtrate was concentrated and partitioned between water and EtOAc. The organic layer was dried over MgSO_{4}, concentrated, and purified by silica gel column chromatography (Hex: EtOAc $=3: 1)$ to afford the cyclohexanone $3(6.7 \mathrm{~g} .82 \%)$: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}) .5 .04$ (s. 2 H). 3.84 $(\mathrm{m} .1 \mathrm{H}) .2 .40(\mathrm{~m}, 2 \mathrm{H}) .2 .27(\mathrm{~m}, 2 \mathrm{H}) .1 .99(\mathrm{~m}, 2 \mathrm{H}) .1 .68(\mathrm{~m}$. 2 H).
(6-Methoxy-2,3,4,9-tetrahydro-1 H -carbazol-3-yl)carbamic acid benzyl etster (4a). A solution of 4-methoxyphenyl hydrazine hydrochloride (1.94 g .11 .13 mmol). sodium acetate (1.25 g .15 .1 mmol), and cyclohexanone $6(2.5 \mathrm{~g}$. 10.12 mmol) in acetic acid (50 mL) was heated for 20 h at reflux. The solvent was removed in vacuo and the residue was partitioned between water and EtOAc. The organic layer was dried. concentrated. and purified by column chromatography ($\mathrm{Hex}: \mathrm{EtOAc}=4: 1$) to give the 6 -methoxytetralydrocarbazole $4 \mathrm{a}\left(2.55 \mathrm{~g} .72 \%\right.$): ${ }^{l} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 7.77$ (brs. 1 H). $7.53-7.25(\mathrm{~m} .7 \mathrm{H}) .7 .16(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz} .1 \mathrm{H}) .6 .88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .80(\mathrm{dd}, J=8.0 .2 .4$ $\mathrm{Hz}, 1 \mathrm{H}) .5 .12(\mathrm{~s}, 2 \mathrm{H}) .4 .94(\mathrm{~d} . J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .4 .20(\mathrm{~m} .1 \mathrm{H})$. $3.84(\mathrm{~s} .3 \mathrm{H}) .3 .10(\mathrm{dd} . J=15.6 .5 .4 \mathrm{~Hz}, 1 \mathrm{H}) .2 .80(\mathrm{~m}, 2 \mathrm{H})$. $2.63(\mathrm{dd} . J=15.4 .6 .8 \mathrm{~Hz}, 1 \mathrm{H}) .2 .09(\mathrm{~m} .2 \mathrm{H})$.

6-Benzyloxycarbonylamino-6,7,8,9-tetrahydro-5 H -carba-zole-3-carboxylic acid (4b). ${ }^{1} \mathrm{H}$ NMR (300 MHz . DMSOd_{6}) $\delta 12.2$ (brs. 1 H). $9.72(\mathrm{~s} .1 \mathrm{H}) .8 .58(\mathrm{~s} .1 \mathrm{H}) .7 .63($ dd. $J=$ $8.7 .1 .2 \mathrm{~Hz}, 1 \mathrm{H}) 7.38-7.32(\mathrm{~m}, 6 \mathrm{H}) .7 .28(\mathrm{~d} . J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$. $5.05(\mathrm{~s} .2 \mathrm{H}) .3 .84(\mathrm{~m} .1 \mathrm{H}) .2 .97$ (dd. $J=15.0 .5 .1 \mathrm{~Hz} .1 \mathrm{H})$. $2.81(\mathrm{~m} .2 \mathrm{H}) .2 .57(\mathrm{dd} . J=15.0 .6 .7 \mathrm{~Hz} .1 \mathrm{H}) .2 .05(\mathrm{~m} .1 \mathrm{H})$. $1.80(\mathrm{~m} .1 \mathrm{H})$.
(6-Benzyloxycarbonylamino-6,7,8,9-tetrahydro-5 H -carbazol-3-yl) acetic acid methyl ester (4c). ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77$ (brs. 1 H), $7.35-7.30$ (m. 6 H). 7.21 (d. J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .7 .04(\mathrm{dd} . J=8.1 .1 .6 \mathrm{~Hz} .1 \mathrm{H}) .5 .11(\mathrm{~s} .2 \mathrm{H})$. $4.92(\mathrm{~m} .1 \mathrm{H}) .4 .17(\mathrm{~m}, 1 \mathrm{H}) .3 .69(\mathrm{~s} .2 \mathrm{H}) .3 .67(\mathrm{~s} .3 \mathrm{H}) .3 .07$ (dd. $J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .2 .79(\mathrm{~m} .2 \mathrm{H}) .2 .59(\mathrm{dd} . J=15.4$. $6.7 \mathrm{~Hz}, 1 \mathrm{H}) .2 .00(\mathrm{~m} .2 \mathrm{H})$: MS (me). 392 (M'. 11). 241 (100), 215 (17), 180 (41), 156 (37), 91 (53).

6-Benzyloxycarbonyl-6,7,8,9-tetrahydro-5 H-carbazole-3-carboxylic acid ethyl ester (4d). ${ }^{1} \mathrm{H}$ NMR (200 MHz . CDCl_{3}) $\delta 8.18$ (dd. $J=1.6 .0 .6 \mathrm{~Hz}, 1 \mathrm{H}$). 8.07 (brs. 1 H). 7.85 (dd. $J=8.5,1.6 \mathrm{~Hz} .1 \mathrm{H}$), 7.26 (dd. $J=8.5,0.6 \mathrm{~Hz} .1 \mathrm{H}$). $7.35-7.33$ (m. 5 H). 5.11 (s. 2 H). 4.94 (br d. 1 H). 4.38 (q. $J=$ 7.2 Hz .2 H). 4.17 (m. 1H). 3.13 (dd. $J=15.6 .5 .4 \mathrm{~Hz}, 1 \mathrm{H}$). $2.81(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=15.6 .6 .8 \mathrm{~Hz}, 1 \mathrm{H}) .2 .05(\mathrm{~m}, 2 \mathrm{H})$, 1.41 (t. $J=7.2 \mathrm{~Hz} .3 \mathrm{H}$): MS (me), $392\left(\mathrm{M}^{+}, 11\right) .347(8)$. 241 (100). 215 (13). 168 (16). 91 (21).
(6-Fluono-2,3,4,9-tetrahydro-1 H -carbzaol-3-yl)carbamic acid benzyl ester (4e). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 7.82$ (br s. 1 H). $7.37-7.34(\mathrm{~m} .5 \mathrm{H}), 7.15$ (dd. $J=8.7 .4 .4 \mathrm{~Hz} .1 \mathrm{H}$). $7.04(\mathrm{dd} . J=9.3 .2 .4 \mathrm{~Hz} .1 \mathrm{H}) .6 .85(\mathrm{~m}, 1 \mathrm{H}) .5 .11(\mathrm{~s} .2 \mathrm{H})$, $4.94(\mathrm{~m} .1 \mathrm{H}) .4 .16(\mathrm{~m} .1 \mathrm{H}) .3 .03(\mathrm{dd} . J=15.2 .4 .8 \mathrm{~Hz} .1 \mathrm{H})$. 2.81-2.75 (m. 2H). 2.55 (dd. $J=15.4 .6 .9 \mathrm{~Hz}, 1 \mathrm{H}) .2 .00(\mathrm{~m}$. 2H): MS (me). 338 ($\mathrm{M}^{+} .1$). 186 (100). 161 (86). 91 (82).
(2,3,4,9-Tetrahydro-1 H -carbazol-3-yl)carbamic acid benzyl ester (4f). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (brs. $1 \mathrm{H}) .7 .44-7.27(\mathrm{~m}, 5 \mathrm{H}) .7 .19-7.06(\mathrm{~m}, 2 \mathrm{H}) .5 .11(\mathrm{~s}, 2 \mathrm{H})$. $4.92(\mathrm{~m} .1 \mathrm{H}) .4 .20(\mathrm{~m} .1 \mathrm{H}) .3 .09(\mathrm{dd} . J=15.6 .5 .4 \mathrm{~Hz} .1 \mathrm{H})$. $2.80(\mathrm{~m} .2 \mathrm{H}) .2 .62(\mathrm{dd} . J=15.6 .6 .6 \mathrm{~Hz}, 1 \mathrm{H}) .2 .19-1.85(\mathrm{~m}$. 2H): MS (me). 364 ($\mathrm{M}^{+} .2$), 256 (3). 213 (37). 168 (25). 91 (100).
(6-Bromo-2,3,4,9-tetrahydro-1 H -carbzaol-3-yl)carbamic acid benzyl ester (4g). ${ }^{1} \mathrm{H}$ NMR (200 MHz . DMSO-d $\mathrm{d}_{6}+$ CDCl_{3}) $\delta 10.5$ (brs. 1 H). $7.45-7.06(\mathrm{~m} .8 \mathrm{H}) .6 .38(\mathrm{~m}, ~ \mathrm{H})$. $5.09(\mathrm{~s} .2 \mathrm{H}) .4 .02(\mathrm{~m} .1 \mathrm{H}) .3 .00(\mathrm{~m} .1 \mathrm{H}) .2 .84(\mathrm{~m} .2 \mathrm{H}) .2 .58$ $(\mathrm{m} .1 \mathrm{H}) .2 .10(\mathrm{~m} .1 \mathrm{H}) .1 .95(\mathrm{~m}, 1 \mathrm{H}): \mathrm{MS}(\mathrm{me}) .398\left(\mathrm{M}^{+}-1\right.$. 15). 247 (100), 221(22), $167(60) .91$ (61).

6-Amino-6,7,8,9-tetrahydro-5H-carbazol-3-01 (5). To a solution of (6-methoxy-2.3.4.9-tetrahydro-1 H -carbazol-3yl)carbamic acid benzyl ester (1.2 g .3 .42 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ was added $1 \mathrm{M}-\mathrm{BBr}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(8.6 \mathrm{~mL} .8 .6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 6 h at room temperature. then quenched with addition of sat- NaHCO_{3} solution at 0 ${ }^{\circ} \mathrm{C}$. The mixture was basified with addition of $1 \mathrm{~N}-\mathrm{NaOH}$ solution and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. which was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give the aminocarbazole 5 ($0.36 \mathrm{~g} .52 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CD}_{3} \mathrm{OD}$) δ $7.04(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .73(\mathrm{~d} . J=2.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .55(\mathrm{dd} . J$ $=8.4 .2 .4 \mathrm{~Hz} .1 \mathrm{H}) .3 .24(\mathrm{~m}, 1 \mathrm{H}) .3 .15(\mathrm{~m} .1 \mathrm{H}) .2 .90(\mathrm{dd}, J=$ $15.0 .5 .4 \mathrm{~Hz} .1 \mathrm{H}) .2 .78$ (m. 2H). $2.32(J=15.0 .8 .4 \mathrm{~Hz} .1 \mathrm{H})$, $2.01(\mathrm{~m} .1 \mathrm{H}) .1 .76(\mathrm{~m} .1 \mathrm{H}): \mathrm{MS}$ (me). $202\left(\mathrm{M}^{-} .44\right) .184$ (10). 159 (100). 130 (6). 77 (5).
(6-Amino-6,7,8,9-tetrahydro-5H-carbazol-3-yloxy)acetic acid methyl ester (6). To a solution of $5(0.28 \mathrm{~g} .1 .40 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(4: 1.25 \mathrm{~mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.44 \mathrm{~g} .4 .2$ nmol) and $(\mathrm{BOC})_{2} \mathrm{O}(0.63 \mathrm{~g} .2 .8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. The solution was diluted
with EtOAc and the organic layer was separated washed with brine. dried. concentrated, and purified with column chromatography ($\mathrm{Hex}: \mathrm{EtOAc}=4: 1$) to give the BOC amino carbazole: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 7.75$ (brs. $1 \mathrm{H}) .7 .08(\mathrm{~d} . J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .7 .79$ (brs. 1 H$) .6 .68(\mathrm{dd} . J=$ $8.4 .2 .6 \mathrm{~Hz} .1 \mathrm{H}) .5 .63(\mathrm{~m}, 1 \mathrm{H}) .4 .76(\mathrm{~m} .1 \mathrm{H}) .2 .93(\mathrm{dd} . J=$ $15.6 .5 .0 \mathrm{~Hz} .1 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.43(J=15.6 .7 .0 \mathrm{~Hz} .1 \mathrm{H})$. $1.82(\mathrm{~m} .2 \mathrm{H})$: MS (me), $302\left(\mathrm{M}^{+} .100\right.$), 245 (29). 229 (38). 184 (78). 159 (94), 57 (46). To a solution of the BOC amino carbazole (0.23 g .0 .75 mmol) in acetone (10 mL) was added methyl bromoacetate (0.18 mL .1 .89 mmol$). \mathrm{K}_{2} \mathrm{CO}_{5}(0.42 \mathrm{~g}$. 3.0 mmol), and a catalytic amount of KI. and the mixture was heated for 36 h at reflux. After cooling. the solvent was removed. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtoAc and the organic layer was separated. washed with brine. dried over MgSO_{4}. concentrated and purified by column chromatography ($\mathrm{Hex}: \mathrm{EtOAc}=10: 1$) to give the ester $(0.24 \mathrm{~g} .85 \%)$, which was then treated with $\mathrm{CF}_{3} \mathrm{COOH}$ (2 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}$). The mixture was stirred for 13 h at room temperature and concentrated to give the amino carbazole 6: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25$ (brs. 1 H). $7.13(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .90(\mathrm{~d} . J=2.3 \mathrm{~Hz} .1 \mathrm{H}) .6 .76(\mathrm{dd} . J$ $=8.4 .2 .3 \mathrm{~Hz} .1 \mathrm{H}) .4 .66(\mathrm{~s} .2 \mathrm{H}) .3 .81(\mathrm{~s} .3 \mathrm{H}) .3 .28(\mathrm{~m}, 1 \mathrm{H})$. 2.99 (dd. $J=15.1 .5 .3 \mathrm{~Hz} .1 \mathrm{H}) .2 .79(\mathrm{~m} .2 \mathrm{H}) .2 .42(J=15.1$. $8.4 \mathrm{~Hz}, 1 \mathrm{H}) .2 .05(\mathrm{~m}, 1 \mathrm{H}) .1 .78(\mathrm{~m} .1 \mathrm{H})$.
6-Methoxy-2,3,4,9-tetrahydro-1 H -carbazol-3-ylamine (7a). To a solution of the N-Cbz tetrahydrocarbazole 4a (0.50 g .1 .43 mmol) and anmonium formate (0.37 g .5 .11 mmol) in $\mathrm{EtOH}(50 \mathrm{~mL}$) was added $10 \%-\mathrm{Pd} / \mathrm{C}(125 \mathrm{mg})$. and the minture was stirred for 24 h . then filtered through a pad of Celite, washed with ethanol. The filtrate was concentrated to give the amino tetrahydrocarbazole 7a (0.29 g. 92%): ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ (brs. 1 H) .7 .14 $(\mathrm{d} . J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .6 .91(\mathrm{~d} . J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .76(\mathrm{dd} . J=$ $8.6 .2 .4 \mathrm{~Hz}, 1 \mathrm{H}) .3 .85(\mathrm{~s} .3 \mathrm{H}) .3 .24(\mathrm{~m}, 1 \mathrm{H}) .2 .99(\mathrm{dd} . J=$ $15.3 .5 .4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.42(J=15.3 .8 .3 \mathrm{~Hz}, 1 \mathrm{H})$. $2.02(\mathrm{~m}, 1 \mathrm{H}) .1 .78(\mathrm{~m} .1 \mathrm{H}): \mathrm{MS}\left(\right.$ me) $216\left(\mathrm{M}^{-}, 62\right) .199$ (27). 173 (100). 158 (31).
(6-Amino-6,7,8,9-tetrahydro-5H-carbazol-3-yl)acetic acid methyl ester (7 b). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (brs. 1H). 7.14 (d. $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .91(\mathrm{~d} . J=2.4 \mathrm{~Hz} .1 \mathrm{H})$. 6.76 (dd. $J=8.4 .2 .4 \mathrm{~Hz} .1 \mathrm{H}) .3 .69$ (s. 2 H). 3.66 (s. 3 H). $3.23(\mathrm{~m} .1 \mathrm{H}) .2 .99(\mathrm{dd} . J=15.4 .5 .4 \mathrm{~Hz} .1 \mathrm{H}) .2 .79(\mathrm{~m} .2 \mathrm{H})$. $2.42(J=15.4 .8 .3 \mathrm{~Hz}, 1 \mathrm{H}) .2 .02(\mathrm{~m} .1 \mathrm{H}) .1 .78(\mathrm{~m} .1 \mathrm{H})$.
6-Amino-6,7,8,9-tetrahydro-5 H -carbazole-3-carboxylic acid ethyl ester (7c). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.21$ (s. $1 \mathrm{H}) .7 .85(\mathrm{dd} . J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}) .7 .25(\mathrm{~d} . J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$. $4.39(\mathrm{q} . J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd} . J=15.2 .5 .4$ $\mathrm{Hz}, 1 \mathrm{H}) .2 .82(\mathrm{~m}, 2 \mathrm{H}) .2 .49(J=15.2 .7 .7 \mathrm{~Hz}, 1 \mathrm{H}) .2 .05(\mathrm{~m}$. $1 \mathrm{H}) .1 .81(\mathrm{~m} .1 \mathrm{H}) .1 .41(\mathrm{t} . J=7.4 \mathrm{~Hz} .3 \mathrm{H}): \mathrm{MS}(m e) .258$ $\left(\mathrm{M}^{+} .37\right) .215$ (100). 187 (35). 170 (19). 142 (13). 115 (11).

6-Fluoro-2,3,4,9-tetrahydro-1 H-carbazol-3-ylamine (7d). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{5}$) $\delta 8.02$ (br s. 1 H). $7.17-$ $7.04(\mathrm{~m} .2 \mathrm{H}) .6 .84(\mathrm{~m} .1 \mathrm{H}) .3 .32(\mathrm{~m} .1 \mathrm{H}) .2 .96(\mathrm{dd} . J=15.0$. $5.0 \mathrm{~Hz} .1 \mathrm{H}) .2 .41(\mathrm{~m} .1 \mathrm{H}) .2 .03(\mathrm{~m}, 1 \mathrm{H}) .1 .77(\mathrm{~m}, 1 \mathrm{H}) .1 .50$ (s. 2 H): MS (me), 204 ($\mathrm{M}^{-}, 48$), 186 (19). 161 (100), 133 (15).

2,3,4,9-Tetrahydro-1 H-carbazol-3-ylamine (7e). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 7.79$ (br s. 1 H). 7.45 (dd. $J=7.0$. $2.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .25(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.01(\mathrm{~m} .2 \mathrm{H}) .3 .31(\mathrm{~m}, 1 \mathrm{H})$. 3.04 (dd. $J=15.0 .5 .2 \mathrm{~Hz} .1 \mathrm{H}) .2 .83$ (m. 2H). 2.42 (dd. $J=$ $15.0 .8 .2 \mathrm{~Hz} .1 \mathrm{H}) .2 .05(\mathrm{~m}, 1 \mathrm{H}) .1 .85(\mathrm{~m} .1 \mathrm{H}): \mathrm{MS}(\mathrm{me})$. 186 (M. $\mathrm{M}^{-} .23$), 168 (9), 143 (100). 115 (20).
(R)- \{6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7, 8,9-tetrahydro-5H-carbazol-3-yloxy\}acetic acid methyl ester (1a). A solution of (R)-(+)-3-Chlorostyrene oxide (30 mg .0 .19 mmol) and the 6 -aminotetrahydrocarbazole 6 (43 $\mathrm{mg} .0 .16 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was heated for 12 h . After cooling, the mixture was concentrated and the residue was purified with column chromatography ($3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the ethanolamine 1 a ($38 \mathrm{mg} .56 \%$): ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25($ brs. 1 H$) .7 .25-7.23(\mathrm{~m}, 4 \mathrm{H}) .7 .12(\mathrm{~d} . J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .91(\mathrm{~d} . J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) .6 .77(\mathrm{dd} . J=8.4 .2 .3$ $\mathrm{Hz} .1 \mathrm{H}) .4 .71(\mathrm{~m} .1 \mathrm{H}) .4 .66(\mathrm{~s} .2 \mathrm{H}) .3 .81(\mathrm{~s} .3 \mathrm{H}) .3 .28(\mathrm{~m}$. $1 \mathrm{H}), 3.15-3.10(\mathrm{~m} .2 \mathrm{H}), 2.99(\mathrm{dd} . J=15.1 .5 .3 \mathrm{~Hz} .1 \mathrm{H}), 2.79$ (m, 2H), $2.42(\mathrm{~d} . J=15.1 .8 .4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m} .1 \mathrm{H}), 1.78$ (m, 1H): HRMS (M^{+}) calcd for $\mathrm{C}_{23} \mathrm{H}_{3} 5 \mathrm{ClN}_{2} \mathrm{O}_{4} 428.1503$. found 428.1503 .
(R)-1-(3-Chlorophenyl)-2-(6-methoxy-2,3,4,9-tetrahydro1 H -carbazol-3-ylamino)ethanol (1b). ${ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.78$ (brs. 1 H), $7.25-7.22(\mathrm{~m}, 4 \mathrm{H}) .7 .15(\mathrm{~d} . J=8.5$ $\mathrm{Hz} .1 \mathrm{H}) .6 .91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .76$ (dd. $J=8.6 .2 .4 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .71(\mathrm{~m} .1 \mathrm{H}) .3 .85(\mathrm{~s} .3 \mathrm{H}) .3 .24(\mathrm{~m} .1 \mathrm{H}) .3 .16-3.12(\mathrm{~m}$. 2H). $2.99(\mathrm{~m} .1 \mathrm{H}) .2 .79(\mathrm{~m} .2 \mathrm{H}) .2 .42(\mathrm{~m} .1 \mathrm{H}) .2 .02(\mathrm{~m} .1 \mathrm{H})$. $1.79(\mathrm{~m} .1 \mathrm{H})$.
(R)-\{6-[2-Chlorophenyl]-2hydroxyethylamino\}-6,7,8,9-tetrahydro- $5 H$-carbazol-3-yl\}acetic acid methyl ester (1c). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{2}$) $\delta 7.78$ (brs. 1H). $7.41-$ $7.04(\mathrm{~m} .7 \mathrm{H}) .4 .73(\mathrm{~m} .1 \mathrm{H}) .3 .69(\mathrm{~s} .2 \mathrm{H}) .3 .67(\mathrm{~s} .3 \mathrm{H}) .3 .15-$ $2.48(\mathrm{~m} .9 \mathrm{H}) .2 .12(\mathrm{~m} .2 \mathrm{H}) .1 .86(\mathrm{~m} .1 \mathrm{H}): \mathrm{MS}(\mathrm{me}) .412$ $\left(\mathrm{M}^{-}, 13\right) .349$ (11). 271 (65), 242 (47). 215 (57). 141 (100): HRMS (M ${ }^{-}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3} 412.1554$. found 412.1561.
(R)-6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7, 8,9-tetrahydro-5 H -carbazole-3-carboxylic acid ethyl ester (1d). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.18$ (brs. 2 H). $7.84(\mathrm{dd} . J=8.4 .1 .4 \mathrm{~Hz} .1 \mathrm{H}), 7.27$ (s. 1 H). $7.25-7.23$ (m. $4 \mathrm{H}) .4 .71(\mathrm{~m} .1 \mathrm{H}) .4 .38(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}) .3 .15-3.11(\mathrm{~m}$. $3 H), 3.09-2.52(\mathrm{~m}, 6 \mathrm{H}) .2 .15(\mathrm{~m}, 1 \mathrm{H}) .1 .86(\mathrm{~m} .1 \mathrm{H}) .1 .41(\mathrm{t}$. $J=7.2 \mathrm{~Hz} .3 \mathrm{H}$): MS (me), $412\left(\mathrm{M}^{+}, 6\right) .271$ (65). 258 (18). 242 (19). 215 (100). 187 (33). 168 (31). 77 (41).
(R)-1-(3-Chlorophenyl)-2-(6-fluoro-2,3,4,9-tetrahydro1 H -carbazol-3-ylamino)ethanol (1e). ${ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.82$ (brs. 1 H). $7.31-6.79(\mathrm{~m} .8 \mathrm{H}) .4 .20(\mathrm{~m}, ~ \mathrm{H})$. $4.00(\mathrm{~m}, 2 \mathrm{H}) .3 .40(\mathrm{~m}, 3 \mathrm{H}) .3 .18-2.80(\mathrm{~m}, 6 \mathrm{H}) .2 .62(\mathrm{~m}, 1 \mathrm{H})$. $2.18(\mathrm{~m} .1 \mathrm{H}) .1 .97(\mathrm{~m}, 1 \mathrm{H}): \mathrm{MS}$ (me). $354\left(\mathrm{M}^{-} .29\right) .217$ (13). 188 (22). 161 (100).
(R)-1-(3-Chlorophenyl)-2-(2,3,4,9-tetrahydro-1 H -carba-zol-3-ylamino)ethanol (1f). ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.74 (brs. 1H). 7.46-7.41 (m. 2H). 7.33-7.26 (m. 4H). 7.17$7.05(\mathrm{~m} .2 \mathrm{H}) .4 .69(\mathrm{~m}, 1 \mathrm{H}) .3 .20-3.03(\mathrm{~m}, 3 \mathrm{H}) .2 .85-2.73$ (m. 3H). 2.62-2.51 (m. 3H). $2.16(\mathrm{~m}, 1 \mathrm{H}) .1 .87(\mathrm{~m} .1 \mathrm{H}): \mathrm{MS}$ (me). 342 ($\mathrm{M}^{-}+2.4$). 340 (12). 199 (88). 170 (59). 143 (100).
(R)-6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7, 8,9-tetrahydro-5H-carbazol-3-0I (1g). ${ }^{1} \mathrm{H}$ NMR (200 $\mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 7.73$ (brs. 1H). $7.41-7.03$ (m. 4 H). 7.04 (d. J $=8.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .55(\mathrm{dd}, J=8.4 .2 .4$ $\mathrm{Hz} .1 \mathrm{H}) .4 .70(\mathrm{~m} .1 \mathrm{H}) .3 .24(\mathrm{~m} .1 \mathrm{H}) .3 .15-3.12(\mathrm{~m} .2 \mathrm{H})$. $2.90-2.78(\mathrm{~m}, 2 \mathrm{H}) .2 .32(\mathrm{~m}, 1 \mathrm{H}) .2 .01(\mathrm{~m} .1 \mathrm{H}) .1 .76(\mathrm{~m} .1 \mathrm{H})$.
(R)-(\{6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6, 7,8,9-tetrahydro-5H-carbazole-3-carbonyl\}amino)acetic acid ethyl ester (1j). A solution of the carbosylic acid 4 $(0.36 \mathrm{~g} .1 \mathrm{mmol})$. glycine ethyl ester hydrochloride $(0.17 \mathrm{~g}$. 1.2 mmol). 1-(3-dimethylaminopropyl)-3-ethỵ lcarbodiimide hydrochloride (0.28 g . 1.5 mmol). 1-hydroxy benzotriazole (0.16 g .1 .2 mmol) and triethylamine (0.78 mL .2 mmol) in DMF (5 mL) was stirred at room temperature for 5 h . Ethyl acetate was added. and the mixture was washed with sat. NaHCO_{3} solution, water. and brine. The organic solution was dried over MgSO_{4}. concentrated, and purified with column chromatography ($\mathrm{Hex}: \mathrm{EtOAc}=3: 1$) to give the amide $9 \mathrm{c}(0.29 \mathrm{~g} .66 \%)$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18$ (brs. 1 H) .8 .09 (brs. 1H). 7.84 (dd $J=8.5 .1 .6 \mathrm{~Hz} .1 \mathrm{H}$). 7.24 (d. $J=8.5, \mathrm{~Hz} .1 \mathrm{H}) .7 .34-7.33(\mathrm{~m} .5 \mathrm{H}) .5 .12(\mathrm{~s} .2 \mathrm{H}) .4 .93$ (br d. 1 H) .4 .24 (q. $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .16(\mathrm{~m}, 1 \mathrm{H}) .3 .12(\mathrm{dd} . J=$ $15.4 .5 .4 \mathrm{~Hz} .1 \mathrm{H}) .2 .81(\mathrm{~m} .2 \mathrm{H}) .2 .64(\mathrm{dd} . J=15.4 .6 .7 \mathrm{~Hz}$. $1 \mathrm{H}) .1 .95(\mathrm{~m}, 2 \mathrm{H}) .1 .23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. The glycine amide 9 c was transformed to the arylethanolamine 1 j by following the procedure as described in the synthesis of 7 a and 1a. ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30$ (brs. 1 H). 7.89 (br s. 1H). 7.54 (d. $J=9.2 \mathrm{~Hz} .1 \mathrm{H}) .7 .40(\mathrm{~m} .1 \mathrm{H}) .7 .30-7.19$ (m. 4 H). $6.80(\mathrm{brs} .1 \mathrm{H}) ..4 .74(\mathrm{~m} .1 \mathrm{H}) .4 .25$ (br s. 2 H). 3.18$2.90(\mathrm{~m} .4 \mathrm{H}) .2 .72(\mathrm{~m} .2 \mathrm{H}) .2 .51(\mathrm{~m} .1 \mathrm{H}) .2 .11(\mathrm{~m} .1 \mathrm{H})$. $21.91(\mathrm{~m} .1 \mathrm{H}) .1 .23$ (t. $J=7.2 \mathrm{~Hz} .3 \mathrm{H}$): HRMS (M ${ }^{-}$) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{4} 469.1768$. found 469.1764.
(R)-6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7, 8,9-tetrahydro-5 H -carbazole-3-carboxylic acid phenylamide (1i). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.99$ (brs. 1 H). $7.61-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m} .6 \mathrm{H}) .7 .03(\mathrm{~m}$. $1 \mathrm{H}) .4 .72(\mathrm{~m} .1 \mathrm{H}) .3 .57(\mathrm{~m} .1 \mathrm{H}) .3 .46(\mathrm{~m}, 1 \mathrm{H}) .3 .08(\mathrm{~m}, 3 \mathrm{H})$. 2.91-2.77(m. 5 H$) .2 .50(\mathrm{~m} .1 \mathrm{H}) .2 .11(\mathrm{~m} .1 \mathrm{H}) .1 .80(\mathrm{~m} .1 \mathrm{H}):$ HRMS (M^{-}) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{2} 459.1714$, found 459.1711.
(R)-6-[3-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7, 8,9-tetrahydro-5 H -carbazole-3-carboxylic acid amide (1k). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, ~ \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.08(\mathrm{~d} . J=2.0 \mathrm{~Hz}$. $1 \mathrm{H}) .1 \mathrm{H}) .7 .71(\mathrm{~m} .1 \mathrm{H}) .7 .52(\mathrm{~s} .1 \mathrm{H}) .7 .42-7.33(\mathrm{~m} .4 \mathrm{H})$. $4.85(\mathrm{~m} .1 \mathrm{H}) .3 .38-2.93(\mathrm{~m} .10 \mathrm{H}) .2 .64(\mathrm{~m}, 1 \mathrm{H}) .2 .28(\mathrm{~m}$. $1 \mathrm{H}) .2 .08(\mathrm{~m} .1 \mathrm{H}) .1 .96(\mathrm{~m}, 1 \mathrm{H})$: HRMS (M) calcd for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{ClN}_{3} \mathrm{O}_{2} 383.1401$, found 383.1400 .
(R)-Pyrrolidine-1-carboxylic acid $\{6$-[2-(3-chlorophen-yl)-2-hydroxyethylamino]-6,7,8,9-tetrahydro-5H-carbazol-3-yl\}amide (1m). To a solution of DMF ($0.32 \mathrm{~mL}, 4.1$ mmol) in benzene (3 mL) was added thionyl chluoride (0.32 mL .4 .4 mmol) at $0^{\circ} \mathrm{C}$ and the solution was stirred for 10 min at room temperature. After cooling to $-5^{\circ} \mathrm{C}$. the tetrahydrocarbazole carboxylic acid 4 (1.0 g. 2.75 mmol). pyridine (0.76 mL .9 .3 mmol) and sodium azide (0.61 g . 9.3 mmol) were added to the solution and the resulting suspension was stirred for 10 min . followed by additional
stirring for 2 h at room temperature. The reaction mixture was poured into water, extracted with EtOAc. and the organic layer was washed with brine dried over MgSO_{4}, and concentrated. The residue was dissolved in toluene (30 mL). heated for 10 min . and concentrated to give the isocyanate 11. which was used for the next reaction without further purification. To a solution of isocyanate (0.2 g .0 .55 mmol) in THF (3 mL) was added pyrrolidine (0.23 mL .2 .77 mmol) and the mixture was heated for 12 h . After cooling, the mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. and the organic layer was separated washed with brine. dried. concentrated, and purified with colunn chromatography (Hex: EtOAc $=5: 1$) to give $\{6-[($ pyrrolidine-1-carbonyl)-amino]-2.3.4.9-tetrahydro-1 H -carbazol-3-yl $\}$ carbamic acid benzyl ester 12 b ($0.11 \mathrm{~g} .46 \%$): ${ }^{l} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 8.02$ (brs. 1 H). $7.40-7.35(\mathrm{~m} .6 \mathrm{H}) .7 .12(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H})$. $7.00(\mathrm{dd} . J=10.4 .1 .6 \mathrm{~Hz} .1 \mathrm{H}) .6 .13$ (s. 1H). 5.11 (s. 2H). $4.12(\mathrm{~m}, 1 \mathrm{H}) .3 .45(\mathrm{~m}, 4 \mathrm{H}) .2 .89(\mathrm{dd} . J=15.6 .5 .4 \mathrm{~Hz} .1 \mathrm{H})$. $2.68(\mathrm{~m}, 2 \mathrm{H}), 2.38$ (dd. $J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}) .1 .95(\mathrm{~m}, 6 \mathrm{H})$. The benzyl ester $\mathbf{1 2 b}$ was transformed to the arylethanolamine 1 m by following the procedure as described in the synthesis of 7 a and 1a: ${ }^{1} \mathrm{H}$ NMR (200 MHz . DMSO-d ${ }_{6}$) δ 8.31 (brs. 1 H). 7.41-7.26(m. 5 H$) .7 .09(\mathrm{~m} .1 \mathrm{H}) .6 .96(\mathrm{~m}$. $1 \mathrm{H}) .6 .40(\mathrm{~s} .1 \mathrm{H}) .4 .81(\mathrm{~m} .1 \mathrm{H}) .3 .35(\mathrm{~m} .4 \mathrm{H}) .3 .19(\mathrm{~m} .1 \mathrm{H})$. $2.89-2.61(\mathrm{~m} .3 \mathrm{H}) .2 .25(\mathrm{dd}, J=15.4 .6 .6 \mathrm{~Hz}, 1 \mathrm{H}) .1 .92(\mathrm{~m}$. $1 \mathrm{H}) .1 .79(\mathrm{~m} .4 \mathrm{H}) .1 .67(\mathrm{~m} .1 \mathrm{H})$.
(R)- N - $\{6$-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7,8,9-tetrahydro-5H-carbazol-3-yl\}methansulfonamide (1n). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.47$ (brs. 1 H). $7.35-$ $7.28(\mathrm{~m} .4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .96(\mathrm{~d} . J=1.1 \mathrm{~Hz}$. $1 \mathrm{H}) .4 .85(\mathrm{~m} .1 \mathrm{H}) .3 .28(\mathrm{~m} .1 \mathrm{H}) .2 .84(\mathrm{~s} .3 \mathrm{H}) .2 .83-2.61(\mathrm{~m}$. $5 \mathrm{H}) .2 .56(\mathrm{~m} .1 \mathrm{H}) .2 .18(\mathrm{~m} .1 \mathrm{H}) .1 .92(\mathrm{~m} .1 \mathrm{H})$: HRMS (M-) calcd for $\mathrm{C}_{21} \mathrm{H}_{3} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S} 433.1226$, found 433.1225 .
(R)-3-\{6-[2-(3-Chlorophenyl)-2-hydroxyethylamino]-6,7,8,9-tetrahydro-5H-carbazol-3-yl\}propionic acid methyl ester (10). A mixture of $\mathbf{4 f}(0.21 \mathrm{~g} .0 .53 \mathrm{mmol})$. methyl acrylate (0.1 mL .0 .16 mmol). palladium acetate (20 mg). sodium acetate (93 mg .1 .1 nmol). and N, N-dimethylglycine (20 mg) in N-methylpyrrolidinone (5 mL) in pressure tube was heated for 12 h at $135^{\circ} \mathrm{C}$. and partitioned between saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and ethyl acetate. The organic layer was dried with MgSO_{4}. concentrated. and purified with column chromatography to give the tetrahydrocarbazole acrylate 14 ($0.15 \mathrm{~g} .72 \%$): ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 8.15 (brs. 1 H). $7.80(\mathrm{~d} . J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .55(1.1 \mathrm{H}) .7 .37-$ $7.21(\mathrm{~m}, 7 \mathrm{H}) .6 .39(\mathrm{~d} . J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) .5 .11$ (s. 2H). 5.00 (brs. 1 H). $4.14(\mathrm{~m} .1 \mathrm{H}) .3 .80(\mathrm{~s} .3 \mathrm{H}) .3 .09(\mathrm{dd} . J=15.4 .5 .2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}), 2.64$ (dd. $J=15.4 .6 .7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (m .2 H): MS (me). 404 (M-, 2). 296 (1). 252 (3). 91 (100). The acrylate 14 was transformd to the arylethanolamine 10 by following the procedure as described in the synthesis of 7 a and 1a. For the compound 10 : ${ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~s} .1 \mathrm{H}), 7.40(\mathrm{~s} .1 \mathrm{H}), 7.25-7.23(\mathrm{~m} .4 \mathrm{H}) .7 .16$ (d. $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .6 .95(\mathrm{dd} . J=8.2,1.6 \mathrm{~Hz} .1 \mathrm{H}) .4 .73(\mathrm{~m}$, 1H). 3.66 (s. 3H). 3.15-2.49 (m. 13H). $2.10(\mathrm{~m} .1 \mathrm{H}) .1 .85$ (m. 1H): MS (me). 426 ($\mathrm{M}^{+}, 14$). 285 (100). 256 (67). 229 (74). 156 (48): HRMS (M ${ }^{+}$) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{3}$

426.1710. found 426.1708

Measurement of β_{3}-adrenoceptor binding affinity. To determine the binding affinity of $\mathbf{1 a - 0}$ on β_{5}-adrenoceptor. RB-HBETA3 membrane was incubated with [${ }^{125}$ I]-iodocyanopindolol ($1.4 \mathrm{nM} .2000 \mathrm{Ci} / \mathrm{mmol}$) and unlabeled ligand for 10 min at $37^{\circ} \mathrm{C}$. Propranolol (1 mM) was used to define non-specific binding. Incubation mixture was filtered over glass fiber (Wallac 140-521). washed and measured for radioactivity

Acknowledgments. This work was supported by Ministry of Science and Technology of Korea and Bioneer Corporation.

References

1. (a) Lands. A. M.: Amold. A.: McAulifṫ. J. P.: Luduena. F. P.: Brown. T. G. Jr. Nature 1967. 214. 597. (b) Strosberg. A. D. Anmu. Rew: Pharmacol. Toxicol. 1997.37.421.
2. (a) Arch. T. G. S. Proc. Jutrition Soc. 1989, 48.215 . (b) Emorine. L. J.: Marullo. S.: Briend-Sutren. M.-M.; Patev. G.; Tate. K.: Delavier-Klutchko, C.: Strosberg. A. D. Science 1989, 245. 1118. (c) Tan. S.: Curtis-Prior. P. B. In. J. Obesity 1983. 7. 409.
3. Latonate. M.: Berlan. M. J. Lipid Res. 1993. 34. 1057.
4. (a) Weyer. C.: Gautier. J. F.: Dantorth. E.. Jr. Diabetes Metab. 1999. 25. 11. (b) Souza. J. C.: Burkey. B. F. Curf Pharm. Des. 2001, 7. 1433. (c) Weber. A. E. Amm. Rep. Med. (them. 1998. 33. 193.
5. (a) Cantello, B. C. C.: Smith. S. A. Drugs Future 1991. 16. 797.
(b) Sher. P. M.: Fisher. L. G.: Skwish. S.: Michel. I. M.: Seiler. S. M.: Washburn. W. N.: Dickinson. K. E. J. Med. Chem. Res. 1997. 7. 109.
6. Bloom. J. D.; Dutia. M. D.; Johnson. B. D.: Wissner. A.: Bums,
M. G.: Largis, E. E.: Dolan, J. A.: Claus. T. H. J. Aled. Chem 1992. 35. 3081
7. Harada. H.: Hirokawa. Y:: Suzuki. K.: Hiyama. Y:: Oue. M.: Kawashima. H.: Yoshida. N.: Funtani. Y.: Kato. S. Bioorg Med. Chem. Lett. 2003, 13. 1301
8. (a) Cecchi, R.: Croci, T.; Boigegrain. R.; Boveri. S.; Baroni. M.; Boceardi. G.: Guimbard. J. P.; Guzzi. U. Ew. J. Med. Chem. 1994. 29. 259. (b) Badone. D.: Guzi. U. Bioorg Med Chem. Lett. 1994. + 1921 .
9. Cooke. J. W. B.: Glower. B. N.: Lawrence. R. M.: Sharp. M. T.: Timoschenko. M. F. WO 0266418, April 15. 2003.
10. Yanai. M.: Kawamura. K.: Ueno. M.: Hiramoto, S.; Katsuyama. K.; Fuchizawa, S.: Takahashi. T. 220th ACS Natl. Meet. (Washington DC). Abst. MEDI 303. 2000 .
11. (a) Hieble. J. P.: Bondinell. W. E.: Ruttolo. R. R.. Jr. J. Med. Chent. 1995. 38. 3415 . (b) Kordik. C. P.: Reitz. A. B. J. Med. Chem. 1999, 42, 181
12. (a) Kang. S. K.: Ha, J. D.; Cheon. H.-G.; Choi. J.-K.; Hong. C. S.; Yum. E. K. Bull. Korean Chem. Soc. 2003. 24. 1381. (b) Ok, H. O.: Reigle. L. B.: Candelore. M. A.: Colwell. L. F.: Deng. L.: Feeney. W. P. F.: Forrest. M. J.: Hom. G. J.: MacIntyre. D. E.: Strader. C. D.: Tota. L.: Wang. M. T.: Wyvratt. M. T.: Fisher. M. H.; Weber, A. E. Bioorg Med. Chem. Lett. 2000. 10, 1531.
13. (a) Rogers. C. U.: Corson, B. B. J. Am. Chem. Soc. 1947, 69. 2911. (b) Edwards, J. P.: West. S. J.; Pooley, C. L. F.: Marschke. K. B.: Farmer. L. T.: Tones. T. K. Bioorg Med Chem. Letf. 1998. 8.745.
14. Fisher. M. H:: Amend. A. M.: Bach. T. J.: Baker. T. M.: Brady. E. J.: Candelore. M. R.; Carroll. D.: Cascieri, M. A.: Chiu, S.-H. L.; Deng. L.; Forrest. M. J.; Hegarty-Friscino. B.; Guan, X.-M.: Hom. G. J.: Hutchins, J. E.: Kelly, L. J.; Mathvik, R. J.: Metzger. J. M.; Miller. R. R.: Ok, H. O.; Parmee. E. R.: Saperstein. R.; Strader, C. D.: Stearns. R. A.: Thompson. G. M.: Tota. L.: Vicario. P. P.: Weber. A. E.: Woods. J. W.: Wyvratt. M. J.: Zafian. P. T.: MacIntyre. D. E. J. Clin. Imest. 1998. 101. 2387.
15. Yang. S. D.: Rhee, S. D. unpulished results

[^0]: *Corresponding Author. e-mail: jkchoiazkrict.re.kr

