Synthesis of Highly Functionalized 3,4-Dihydro-2H-pyrans from Baylis-Hillman Acetates*

Jae Nyoung Kim, ${ }^{*}$ Jeong Mi Kim, Ka Young Lee, and Saravanan Gowrisankar
Department of Chemistry and Institute of Basic Science, Chonnam National Unversity, Gwangiu 500-757, Korea Received.April 6. 2004

Key Words: 3.4-Dilydro-2H-pyrans. Baylis-Hillman acetates. Conjugate addition

Chamakh and Anri have reported the reaction of BaylisHillman acetates and β-diketones in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in ethanol and they obtained alkylidene cyclohexenone derivatives (Scheme 1). ${ }^{1}$ This novel reaction has been extended by us for the synthesis of 2-hydroxyacetophenone derivatives by exchanging the solvent from ethanol to DMF (Scheme 1) ${ }^{\text {T}}$
We envisioned that we could synthesize another type of cyclohexenone derivatives containing exo-methylene moiety ${ }^{3}$ by utilizing the Amri's protocol (Scheme 2). The reaction of the Baylis-Hillman acetate 1a and 2,4-pentanedione (2a) in the presence of DABCO in aqueous THF would give the corresponding $\mathrm{S}_{\mathrm{N}} 2$ type substitution product 3a wia the corresponding DABCO salt of the Baylis-Hillman acetate. ${ }^{+}$ The intermediate 3a would undergo the successive deacetylation and aldol type condensation in ethanol in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. and would give the methylene cyclohexenone compound 5 a as shown in Scheme 2.

However. during the synthesis of $\mathbf{3 a}$ we obtained dihydropyran derivative ta as the minor (18%, vide infra). Dilydropyran systems are found in many natural products such as FR $182877^{5 a}$ and a number of iridoid alkaloids ${ }^{5 b}$ and can be used as the important synthetic intermediates. ${ }^{6}$ However. the synthesis required somewhat complex procedures and is limited to rather simple dihydropyran skeletons. ${ }^{6,7}$ In these respects we intended to examine the
improved synthesis of +a from 1a or from 3a. and to report herein the results.

As a first trial we examined the reaction of the BaylisHillman acetate 1a and 2.4-pentanedione (2a) in the presence of DABCO (1.3 equiv.) in aqueous THF at room temperature. The reaction gave the desired $\mathrm{S}_{\mathrm{N}} 2$ product 3 a in 44% isolated yield and another compound ta in 18% isolated yield. The structure of ta was found to be as 3.5-diacetyl-6-methyl-4-phenyl substituted dily dropyran derivative. The yield of 4 a could be improved by elevating the reaction temperature $\left(40-50^{\circ} \mathrm{C}\right)$ to 42%. The Baylis-Hillman acetates 1b and 1c gave the similar results (entries 2 and 3 in Table 1). The reaction of $\mathbf{1 a}$ and $\mathbf{2 a}$ under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in ethanol showed the formation of 4-benzylidene-2cyclohexenone derivative as reported by Amri. ${ }^{1}$

For the Baylis-Hillman acetates 1dl-f. which was derived from methyl acrylate. ethyl acrylate. and acrylonitrile we could not obtain the dihydropyrans $+d$-f directly by using DABCO. Instead, the $\mathrm{S}_{2} 2$ type products 3 d -f were formed as the major ($80-89 \%$ isolated yields. see Table 1 and Scheme 3) from the Baylis-Hilman acetates 1d-f and $\mathbf{2 a}$ or ethyl acetoacetate ($\mathbf{2 b}$). Then. we examined the following Michael type cyclization of 3 d -f under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in alcohol solvent and obtained the desired dihydropyrans $\mathbf{+ d} \mathbf{- f}$. As shown in Table 1, we used catalytic amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}$ for the synthesis of $\mathbf{d d}$ and $\mathbf{d f}$ in order to minimize the

[^0]

Scheme 2

Scheme 3
unvanted deacetylation process. The deacetylation process is not a severe problem for the cyclization of 3 e and we used 1.I equivalents of $\mathrm{K}_{2} \mathrm{CO}_{3}$ for the synthesis of 4 e .

The mechanism for the formation of 4 from 3 can be regarded as cyclization of the enol-form of 3 via the 6 -endotrig mode as depicted in Scheme 2. The structure of 4 was confirmed from their spectroscopic data. ${ }^{1} \mathrm{H} .{ }^{13} \mathrm{C}$, DEPT (4c), ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}(4 \mathrm{c}),{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY (4c), and NOE (4b) experiments. NOE experimental results of $\mathbf{4 b}$ are summarized in Figure 1. The relative stereochemistry of the substituents of 4 at the 3 - and 4 -position was thought to be as anti relationship. ${ }^{8}$ The proton at the 4 -position appeared as a broad singlet in all cases. Thus. we cannot say exactly about the relative stereochemistry between the substituents of 3and 4-position. however. we tentatively propose the relative stereochemistry as anti relationships. ${ }^{8}$
In summary. we have synthesized some synthetically useful 3.4.5.6-tetrasubstituted 3.4-dihydro-2 H -pyrans from Baylis-Hillman acetates in moderate yields. Further studies on the conformational characteristics of the dihydropyrans and the selective synthesis of the exo-methylene cyclohexenone derivatives are currently undergoing and will be reported in due course

Experimental Section

Typical procedure for the synthesis of 4a: A solution of $1 \mathrm{a}(436 \mathrm{mg} .2 \mathrm{mmol})$ and DABCO (291 mg. 2.6 mmol) in
aqueous THF (THF/ $\mathrm{H}_{2} \mathrm{O}=3: 1,10 \mathrm{~mL}$) was stirred for 10 min. at room temperature. Complete salt formation was observed. To the reaction misture 2.4 -pentanedione (200 $\mathrm{mg}, 2 \mathrm{mmol}$) was added and heated to $40.50^{\circ} \mathrm{C}$ for 2 days. After usual aqueous workup and column chromatographic purification process (hexane/ether $=5: 1$) analytically pure ta was isolated in 42% yield, 217 mg .

Typical procedure for the synthesis of 4d: A solution of 1d (468 mg .2 mmol) and DABCO (448 mg .4 mmol) in aqueous THF ($\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=3: 1,10 \mathrm{~mL}$) was stirred for 10 min . at room temperature. Complete salt formation was observed. To the reaction mixture 2.4-pentanedione (200 mg .2 mmol) was added and heated to $40-50^{\circ} \mathrm{C}$ for 24 h . After usual aqueous workup and column chromatographic purification process (hexane/ether $=5: 1$) we could obtain the corresponding $\mathrm{S}_{\mathrm{N}} 2$ type product 3 d in 83% yield. 455 mg . To a stirred solution of $3 \mathbf{d}(274 \mathrm{mg}$. 1 mmol) in methanol (5 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{mg} .0 .1 \mathrm{mmol}$) and heated to $40-50^{\circ} \mathrm{C}$ for 3 h . After usual aqueous workup and colunn chromatographic purification process (hexane/ether $=5: 1$) analytically pure td was isolated in 30% yield. 83 mg . The spectroscopic data of prepared compounds (4a-c. 3d-f. and $\mathbf{4} \mathbf{d - f}$) are as follows.

4a (42\%): IR (KBr) 1712. 1674. $1577 \mathrm{~cm}^{-1}$: ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.03$ (s. 3 H). 2.23 (d. $J=1.2 \mathrm{~Hz} .3 \mathrm{H}$). 2.24 (s. 3 H). 2.74 (app q. $J=3.0 \mathrm{~Hz} .1 \mathrm{H}$). 3.97 (dd. $J=11.4$ and 3.0 Hz .1 H). 4.38 (ddd. $J=11.4,3.0$. and $1.6 \mathrm{~Hz}, 1 \mathrm{H}$). 4.45 (br s. 1H). 7.16-7.35 (m. 5H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.46 .28 .03$.

Table 1. Synthesis of Dilhydropyran Derivatives 4a-f from B-H Acetates
Entry
"The corresponding addition-elimination product 3 was formed as the minor product. ${ }^{\text {b }}$ Deacetylated compound of $3 d$ was formed as the side product. ${ }^{\circ}$ Diastereomeric mixture. ${ }^{3}$ the other stereoisomer was mixed in about $20^{\circ} \%$ in ${ }^{1} \mathrm{H}$ NMR.
$29.37 .38 .88 .53 .64,62.57 .111 .51,127.05,128.01 .128 .96$. 143.97. 163.89. 199.59. 205.91: HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ 258.1256 . found 258.1263 .

4b (44\%): mp 84-85 ${ }^{\circ} \mathrm{C}$: IR (KBr) 1712. $1674.1577 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 2.00$ (s. 3H). 2.15 (d. $J=0.9 \mathrm{~Hz}$. $3 \mathrm{H}) .2 .23(\mathrm{~s} .3 \mathrm{H}) .2 .91(\operatorname{app} \mathrm{dd} . J=2.7$ and 2.4 Hz .1 H$) .3 .75$ (dd. $J=11.7$ and 3.0 Hz .1 H). $4.36(\mathrm{br} \mathrm{s} 1 \mathrm{H}) ..4 .46(\mathrm{dt} . J=$ 11.7 and 2.1 Hz .1 H). 7.24 (d. $J=8.4 \mathrm{~Hz} .2 \mathrm{H}) .7 .39$ (d. $J=$ 8.4 Hz .2 H). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 20.43 .27 .59 .29 .46$. $37.00,51.96,62.20,111.27,128.53,129.93,131.29,143.60$. 163.50. 198.00, 206.06: HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{3}$ 292.0866 . found 292.0867 .
tc (30%) : IR $(\mathrm{KBr}) 1712.1674 .1577 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{t} . J=6.6 \mathrm{~Hz} .3 \mathrm{H}) .2 .01(\mathrm{~s} .3 \mathrm{H}) .2 .23(\mathrm{~d} . J=$ $1.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .36-2.47(\mathrm{~m}, 1 \mathrm{H}) .2 .50-2.63(\mathrm{~m}, 1 \mathrm{H}) .2 .76$ (app q. $J=3.6 \mathrm{~Hz} .1 \mathrm{H}$). 3.97 (dd. $J=11.4$ and 3.3 Hz .1 H). 4.33 (ddd. $J=11.4 .3 .9$. and $1.2 \mathrm{~Hz}, 1 \mathrm{H}$). 4.43 (br s. 1H). 7.15-7.35 (m. 5 H): DEPT results were inserted in ${ }^{13} \mathrm{C}$ NMR data. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58\left(\mathrm{CH}_{3}\right), 20.35\left(\mathrm{CH}_{3}\right) .29 .40$ $\left(\mathrm{CH}_{3}\right) .33 .98\left(\mathrm{CH}_{2}\right), 39.32(\mathrm{CH}) .53 .07(\mathrm{CH}) .62 .90\left(\mathrm{CH}_{2}\right)$, $111.84(\mathrm{C}), 127.00(\mathrm{CH}), 127.93(\mathrm{CH}), 128.91(\mathrm{CH}), 143.91$ (C). 163.55 (C). 199.60 (CO). 208.73 (CO): HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{3} 272.1412$, found 272.1417 .
4d (30%): IR (KBr) $1739.1674 .1577 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR

Figure 1
$\left(\mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d} . J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .2 .80($ app q. $J=2.7 \mathrm{~Hz} .1 \mathrm{H}) .3 .76(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{dd}, J=11.1$ and 3.0 Hz . $1 \mathrm{H}), 4.40(\mathrm{ddd}, J=11.1 .2 .7$, and 1.5 Hz .1 H$), 4.48$ (br s. $1 \mathrm{H}), 7.20-7.36(\mathrm{~m}, 5 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.63,29.22$. $39.55,45.79 .52 .41,62.41$. 110.66, 127.11, 128.04. 128.91. 143.71. 164.31. 171.55. 199.33; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}$ 274 . 1205 . found 274.1207.
4e (62\%): IR (KBr) 1736. 1705. $1624 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .1 .25(\mathrm{t}, J=7.2 \mathrm{~Hz} .3 \mathrm{H})$. 2.34 (d. $J=1.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .75$ (app q, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}) .3 .88-$ $4.02(\mathrm{~m}, 3 \mathrm{H}) .4 .19(\mathrm{q} . J=7.2 \mathrm{~Hz} .2 \mathrm{H}) .4 .35$ (ddd. $J=11 . \mathrm{I}$. 3.6. and $1.5 \mathrm{~Hz} . \mathrm{HH}) .4 .45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15-7.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.89 .14 .12 .19 .93,38.94,45.97,59.61$. $61.12,63.09$. 102.74. 126.50, 127.70, 128.42. 144.64. 164.97. 167.62, 171.24; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5}$ 318.1467. found 318.1441.

4f (63%) : $\mathrm{IR}(\mathrm{KBr}) 2245,1704,1624 \mathrm{~cm}^{-1}$. The sin diastereomer appeared in the ${ }^{1} \mathrm{H}$ NMR spectra in about 20% and we could not separate them in pure state. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{t} . J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .2 .43(\mathrm{~d} . J=1.2 \mathrm{~Hz} .3 \mathrm{H})$. $2.98(\mathrm{appq} . J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) .3 .88-4.05(\mathrm{~m} .3 \mathrm{H}) .4 .20(\mathrm{ddd} . J$ $=11.4,3.3$. and 1.8 Hz .1 H$) .4 .35(\mathrm{br} \mathrm{s} .1 \mathrm{H}), 7.17-7.36(\mathrm{~m}$. $5 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.85,19.95 .31 .90,40.54,59.98$. 61.61. 101.34. 118.74. 127.48. 127.67. 128.78. 142.04. 165.32. 166.72: HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3}$ 271.1208. found 271.1210
3d (83%) : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.88$ (s. 3 H). 2.20 (s. 3 H). $3.69(\mathrm{~s} .3 \mathrm{H}) .4 .56(\mathrm{~d} . J=12.3 \mathrm{~Hz} .1 \mathrm{H}) .4 .79(\mathrm{~d} . J=12.3 \mathrm{~Hz}$. $1 \mathrm{H}) .5 .73(\mathrm{~s} .1 \mathrm{H}), 6.29(\mathrm{~s} .1 \mathrm{H}), ~ 7.17-7.30(\mathrm{~m} .5 \mathrm{H})$
3e (89%): $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.96(\mathrm{t} . J=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}) .1 .18-1.26(\mathrm{~m} .4 .5 \mathrm{H}) .1 .97(\mathrm{~s}$. $1.5 \mathrm{H}) .2 .28(\mathrm{~s} .1 .5 \mathrm{H}) .3 .91(\mathrm{q} . J=7.2 \mathrm{~Hz} . \mathrm{lH}) .4 .07-4.20(\mathrm{~m}$. $3 \mathrm{H}) .4 .35(\mathrm{~d} . J=12.3 \mathrm{~Hz} .0 .5 \mathrm{H}) .4 .38(\mathrm{~d} . J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H})$.
$4.70(\mathrm{~d} . J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.72(\mathrm{~d} . J=12.3 \mathrm{~Hz}, 0.5 \mathrm{H}) .5 .67$ $(\mathrm{s}, 0.5 \mathrm{H}), 5.75(\mathrm{~s}, 0.5 \mathrm{H}) .6 .27(\mathrm{~s}, 0.5 \mathrm{H}) .6 .30(\mathrm{~s} .0 .5 \mathrm{H}) .7 .18-$ 7.27 (m. 5H).
$3 \mathrm{f}(80 \%)$: $3: 2$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.96$ (t. $J=7.2 \mathrm{~Hz} .3 \mathrm{H}$. major), 1.30 (t. $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor). 2.06 ($\mathrm{s}, 3 \mathrm{H}$. minor), 2.38 (s .3 H , major). 3.93 (qd, J $=7.2$ and $3.0 \mathrm{~Hz}, 2 \mathrm{H}$. major), 4.23 (qd. $J=7.2$ and 0.9 Hz , 2H. minor). 4.31-4.45 (m, 2H. major + minor). 5.89 (s, 1H, major). 5.90 (s. IH. minor). 5.94 (s. lH. major), 5.95 (s, 1H, minor). 7.25-7.37 (m. 5 H . major + minor).

Acknowledgments. This work was supported by the grant (R05-2003-000-10042-0) from the Basic Research Program of the Korea Science \& Engineering Foundation. Spectroscopic data was obtained from the Korea Basic Science Institute. Kwangju branch.

References

1. Chamakh. A.: Amri. H. Tetrahedron Lett 1998. 39.375
2. Kim. J. N.: Im, Y. J.: Kim. J. M. Tetrahedron Lett. 2002, $43,6597$.
3. For the exo-methylene cyclohexenones, see: (a) Davis, B. R.; Johnson. S. J. J. Chem. Soc., Perkin Trans. 1 1979. 2840 . (b) Jung. M. E.: Rayle. H. L. Syhth. Commm. 1994. 24. 197. (c) Wild. H. J. Org Chem. 1994. 59. 2748.
4. For the introduction of nucleophile in a $\mathrm{S}_{2} 2$ fashion via using the DABCO salt concept, see: (a) Basavaiah. D.: Kumaragurubaran. N.; Sharada, D. S. Tetrahedron Lett. 2001. 42. 85. (b) Im, Y. J.; Kim. J. M;; Mun. J. H.: Kim, J. N. Bull. Korean Chem. Soc. 2001. 22. 349 . (c) Kim1. J. M.: Lee. K. Y: Kim. J. N. Bull. Korean Chem. Soc. 2004. 25. 328 (d) Gong. J. H.: Kim. H. R.: Ryu. E. K.: Kim. J. N. Bull. Korem Chen. Soc. 2002. 23. 789. (e) Basavaiah. D.: Jaganmohan, R.: Satyanarayana. T. Chem. Rev: 2003. 103, 811 and further references cited therein.
5. Dihydropyran skeleton in natural products. see: (a) Sato. B.; Muramatsu. H.: Miyauchi. M.: Hori. Y.: Takase. S.: Hino. M.: Hashimoto. S.: Terano. H. J. Anibiot. 2000. 53. 123. (b) Trost. B. M.: Balkovec. J. M.: Mao. M. K. T. J. An. Chen. Soc. 1986. 108. 4974 and references cited therein.
6. Dihydropyrans as synthetic intermediates. see: (a) Armstrong. A.; Goldberg, F. W.: Sandham. D. A. Tetrahedron Lett. $2001,42$. 4585. (b) Venkataraman. H.: Cha. T. K. Tetrahedron Lett. 1989. 30. 3509. (c) Tius. M. A.: Chu. C. C.: Nieves-Colberg. R. Tetrahedron Lett 2001 . +2. 2419.
7. Synthesis of dihydropyrans. see: (a) Hekking. K. F. W.: van Delft, F. L.: Rutjes, F. P. J. T. Terrahedron 2003, 59, 6751. (b) Wolinsky. J.; Hauer, H. S. J. Org. Chem. 1969. 34, 3169 . (c) Ito. N.: Etoh. T.; Hagiwara. H.: Kato. M. J. Chem. Soc., Pertin Trons. 11997. 1571. (d) Padwa. A.: Filipkowski. M. A.: Meske. M.: Murphree. S. S.: Watterson. S. H.: Ni. Z. J. Org. Chem. 1994. 59. 588.
8. Construction of dihydropyran skeleton via the hetero Diels-Alder reaction and spectroscopic studies. see: (a) Aben, R. W. M.: de Gelder. R:; Scheeren, H. W. Ew: J. Org. Chem. 2002. 3126 . (b) Gademantr. K.: Chavez. D. E.: Tacobsen. E. N. Angen: Chem. Iht. Ed. 2002. +1. 3059 . (c) Tuhl. K.: Jorgensen. K. A. Angew. Chen. Im. Ed. 2003. 12. 1498. (d) Gao. X.: Hall. D. G. J. Ant. Chem. Soc. 2003. 125, 9308 . (e) Koehler. A. N.; Shamji. A. F.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125. 8420.

[^0]: ${ }^{-}$This paper is dedicated to Prof. Yong Hae Kim for his outstanding achievements in organic chemistry.
 *Corresponding Author. Phone: -82-62-530-3381, e-mail: kimjniachonnamaekr

