Notes

Diarylheptanoids from the Roots of Juglans mandshurica

Gao Li,^{†,‡} Chang-Scob Sco,[†] Seung-Ho Lee,[†] Yurngdong Jahng,[†] Hyeun-Wook Chang,^{*} Chong-Soon Lee,[§] Mi-Hee Woo,[#] and Jong-Keun Son^{†,*}

^{*}College of Pharmacy, Yeungnam University, Gyongsan 712-749, Korea ^{*}College of Pharmacy, Yanbian University, Yanji 133000, P.R. China [§]Department of Biochemistry, College of Natural Sciences, Yeungnam University, Gyongsan 712-749, Korea ^{*}College of Pharmacy, Catholic University of Daegu, Gyongsan 712-702, Korea Received October 7, 2003

Key Words : Juglans mandshurica, Juglandaceae, Diarylheptanoid

The roots of *Juglans mandshurica* Maximowicz (Juglandaceae) have been used as a folk medicine for the treatment of cancer in Korea. Several naphthoquinones, naphthalenyl glucosides, tetralones, flavonoids, diarylheptanoid, and galloyl glycosides have been isolated from *Juglans* species.¹⁻¹⁶ These compounds have shown cytotoxic activity, topoisomerases 1 and 11 inhibitory activity, and inhibitory effect on both DNA polymerase and RNase H activity of HIV-1 reverse transcriptase.¹²⁻¹⁶ In the continuation of our studies on this plant, we isolated three new diarylheptanoids (1-3) from the CHCl₃ fraction of the MeOH extract. This paper describes the structural determination of three new diarylheptanoids, and the absolute configurations of 1 and 3 were elucidated by Mosher's esters.

Three diarylheptanoids (1-3) were isolated from a CHCl₃ fraction of the roots of *J. mandshurica* by repetitive column chromatography and preparative HPLC using a RP-18 column.

Compound 1 has the molecular formula $C_{20}H_{26}O_4$ as determined by the HRFABMS, 13C-NMR, and DEPT spectral data. In the aromatic region of the ¹H-NMR spectra of 1, ^{2}J coupling between H-5" and H-6", and ³J coupling between H-2" and H-6" indicated a 1,3,4-trisubstituted benzene ring, and ²J coupling between two sets of chemically equivalent protons (H-2'/H-6' and H-3'/H-5') suggested an 1,4-disubstituted aromatic ring. The ¹³C NMR spectrum of 1 exhibited a total of 20 carbon signals, including characteristic signals due to a methoxyl group $(3"-OCH_3)$ and two chemically equivalent aromatic carbons (C-2'/C-6' and C-3'/C-5'). In the aliphatic region of DEPT spectra, one hydroxymethine and six methylene signals were exhibited. The ¹H-¹H COSY spectrum showed connectivities among H-1, H-2, H-3, H-4, H-5, H-6, and H-7, between H-2' (H-6') and H-3' (H-5'), and between H-5" and H-6". In the HMBC spectrum of 1 (Figure 2), the connectivities of the two aromatic rings with the alkyl chain were indicated by the cross peaks between H-7 and C-1", C-2" and C-6", and those between H-1 and C-F, C-2', and C-6'. The position of the methoxyl group was determined by both the HMBC correlation of C-3" with 3"-OCH₃ and the positive NOE effect (8.4%) between H-2" and 3"-

Figure 1. Diarylheptanoids isolated from the roots of *Juglans* mandshurica.

OCH₃.^{17,18}

The absolute stereochemistry of the chiral center in 1 was determined using the Mosher's ester based on the differences between the ¹H-NMR chemical shifts of (*S*)- and (*R*)-MTPA ester derivatives. ¹H-NMR data were assigned based on the ¹H-¹H COSY spectra of $\mathbf{1}_S$ and $\mathbf{1}_R$ (Table 1). For 1, the negative value of $\Delta \delta_{\mathrm{H}} (\delta_S - \delta_R)$ at H-2 and the positive value of $\Delta \delta_{\mathrm{H}} (\delta_S - \delta_R)$ at H-4 suggested a *R* configuration at C-3.

Compound **2** has the molecular formula $C_{20}H_{20}O_4$ as determined by the HRFABMS, ¹³C-NMR, and DEPT spectral data. The ¹H-NMR spectrum of **2** showed signals for a 1,3,4-trisubstituted and a 1,4-disubstituted aromatic group same as compound **1**. The ¹H-¹H COSY spectrum of **2** showed the connectivities among H-4, H-5, H-6, and H-7, between H-1 and H-2, between H-2' (H-6') and H-3' (H-5'), and between H-5"and H-6". In the HMBC spectrum of **2** (Figure 2), the location of a carbonyl group in the chain was established by the correlations from C-3 to H-2, H-4, and H5, and the connectivities of the two aromatic rings with the alkyl chain were indicated by the cross peaks from H-7 to C-2" and C-6" and from H-1 to C-2' and C-6'. The position of the methoxyl group on the aromatic ring was also determined by both the

^{*}To whom correspondence should be addressed. Phone: +82-53-810-2817; Fax: +82-53-811-3871; e-mail: jkson@yu.ac.kr

Table 1. Characteristic	i H-NMR (fata of MTPA	esters of 1	and 3
-------------------------	-----------	--------------	-------------	-------

Position	1_{S} δ_{S}	1_R δ_R	$\Delta\delta$ δ_{s} - δ_{R}	Posi- tion	$\frac{3_{N}}{\mathbf{\delta}_{N}}$	$oldsymbol{\mathfrak{Z}}_{\scriptscriptstyle R}\ oldsymbol{\delta}_{\scriptscriptstyle R}$	Δδ δs-δĸ
1	2.51	2.72	-0.09	t	2.57	2.62	-0.05
2	1.91	2.01	-0.10	2	2.00	2.07	-0.07
3	5.13	5.17	R	3	5.46	5.32	S
4	1.79	1.71	+0.08	4	2.18	2.06	± 0.12
5	1.45	1.32	+0.13	5	5.46	5.32	S
6	1.68	1.59	+0.09	6	1.97	2.00	-0.03
7	2.65	2.55	+0.10	7	2.57	2.62	-0.05

→ HMBC → ¹H-¹H COSY

Figure 2. HMBC and ¹H-¹H COSY correlations of compounds I and 2.

HMBC correlation between C-3" with C-3"-OCH₃, and the positive NOE effect (6.8%) between H-2" and C-3"-OCH₃ in the 1D-NOE difference spectrum of 2.

¹H and ¹³C NMR data of **3** was identical with those of reported compound which is an enantiomer of **3**.¹⁹ To determine the absolute configuration of the hydroxyl groups at C-3 and C-5, MTPA esters (**3**_{*R*} and **3**_{*S*}) of **3** were prepared, and ¹H-NMR data was also assigned based on the ¹H,¹H-COSY spectra (Table 1). For **3**, the negative value of $\Delta\delta_{\rm H}(\delta_{N}-\delta_{R})$ at H-1 and H-2, and the negative value of $\Delta\delta_{\rm H}(\delta_{N}-\delta_{R})$ at H-6 and H-7 suggested both *S* configurations at C-3 and C-5.

Among these compounds, only 1 showed weak cytotoxicities against the HT-29 and MCF-7 cell lines (Table 2, IC_{50} : >50 µg/mL and 47.7 µg/mL, respectively).

Table 2, IC_{50} values of the compounds against HT-29 and MCF-7 cell lines

	IC ₅₀ (µg/mL)		
_	HT-29 ^a	MCF-7 ⁶	
1	>50	47.7	
2	>50	>50	
3	>50	>50	
CPT ^c	0.035	3.5	

"HT-29: Human colon carcinoma, "MCF-7: Human breast carcinoma, "camptothesin: positive control.

Experimental Section

General Experimental Procedures. Optical rotations were measured using a JASCO DIP-1000 (Tokyo, Japan) automatic digital polarimeter, and FT-IR spectra were recorded on a JASCO FT-IR 300E spectrophotometer. UV spectra were recorded on a JASCO V-550 spectrophotometer. For preparative HPLC, LC-10AD pump (Shimadzu), SPD-10A detector (Shimadzu), and Shim-Pack Prep-ODS (20×250 mm) column were used. NMR spectra were recorded on a Bruker 250 MHz (DMX 250) spectrometer using Bruker's standard pulse program. Samples were dissolved in either acetone- d_b or CD₃OD, and chemical shifts were reported in ppm downfield from TMS. The MS spectra were measured by a VG TRIO 2A mass spectrometer. Silica gel 60 (70-230 and 270-400 mesh, Merck) and Lichroprep RP-18 gel (40-63 μ m, Merck) were used for column chromatography. TLC plate (Silica-gel 60 F₂₅₄ and RP-18 F₂₅₄) was purchased from EM Scientific. (R)-(–)- α -methoxy- α -(trifluoromethyl)phenylacetyl [(R)-MTPA] chloride and (S)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl [(S)-MTPA] chloride were purchased from Sigma Chemicals Co. Ltd. (St. Louis, MO, USA). All other chemicals and solvents were analytical grade, and used without further purification.

Plant Material. J. mandshurica roots were collected in September 1993 in a mountainous area of Pyongchanggoon, Gangwon-do, Korea, and dried at room temperature for 2 weeks. The material was confirmed taxonomically by Professor Gi-Hwan Bae, at Chungnam National University in Taejeon, Republic of Korea. A voucher specimen has been deposited at the College of Pharmacy, Yeungnam University.

Isolation. J. mandshurica roots (3 kg) were extracted with MeOH two times under reflux for 12 h yielding 300 g of a dark solid extract, 280 g of which was then suspended in H₂O, and extracted with hexane. The resulting H₂O layer was extracted with CHCl₃, and the CHCl₃ solution was evaporated to dryness in vacuo. The CHCl₃ extract (50 g) was loaded on a silica gel column (60×9 cm, Silica gel 70-230 mesh), and the column was eluted with MeOH-EtOAc saturated with H₂O (gradient from EtOAc 100% to MeOH 100%). The eluent was combined on the basis of TLC, giving 17 fractions (F1-17). Fraction F8 (1.5 g) was chromatographed on a reverse phase column (60×3.0 cm, LiChroprep RP-18) with MeOH-H₂O (gradient from 2:8 to 100% MeOH), which afforded 22 subfractions (F8-1~8-22). Subfraction F8-3 (250 mg) from the column was further purified on a reversed-phase column (75 × 2.0 cm, LiChroprep RP-18) with MeOH-H₂O (gradient from 10% to 90% MeOH), affording 1. Subfraction F8-6 (160 mg) from the column was further purified on a reversed-phase column (60×2.0 cm, LiChroprep RP-18) with MeOH-H2O (gradient from 20% to 100% MeOH), affording compounds 2 and 3. Further purifications of 1-3 were carried out using HPLC with MeOH-H₂O gradients.

Compound 1: yellow solid (15 mg), $[\alpha]_D^{25}$ -12.3° (*c* = 0.312, MeOH); UV (MeOH) λ_{max} (log ε) 223.2 (4.13), 280.4 (3.64), 347.0 (2.60); IR (KBr) v_{max} 3391, 2933, 1613, 1514,

Notes

1455, 1363, 1233, 1151, 1123, 1033, 825 cm⁻¹; ¹H-NMR (acetone- d_6 , 250 MHz) δ 7.01 (2H, d, J = 8.4 Hz, H-2'/H-6'). 6.77 (1H, d, J = 1.8 Hz, H-2"). 6.72 (2H, d, J = 8.4 Hz, H-3'/ H-5'). 6.71 (1H, d, J = 8.0 Hz, H-5"), 6.61 (1H, dd, J = 8.0, 1.8 Hz, H-6"), 3.79 (3H, s, 3"-OCH₃), 3.31 (1H, br s, H-3). 2.61 (2H, m, H-1). 2.50 (2H, t, J = 7.5 Hz H-7), 1.68-1.43 (8H, m, H-2, 6, 4, 5); ¹³C-NMR (acetone- d_6 , 62.9 MHz) δ 156.2 (C-4'), 148.1 (C-3"), 145.4 (C-4"), 134.9 (C-1'), 134.3 (C-1"), 130.1 (C-2'/C-6'), 121.5 (C-6"), 115.9 (C-3'/C-5'), 115.6 (C-5"), 112.8 (C-2"), 70.9 (C-3), 56.2 (3"-OCH₃), 40.8 (C-2), 38.3 (C-4), 36.2 (C-7), 32.8 (C-6), 31.9 (C-1), 26.2 (C-5); HRFABMS *m*:*z* 331.1911, (calcd. for C₂₀H₂₇O₄ [M + H]⁻, 331.1909).

Compound 2: yellow solid (14 mg); UV (MeOH) λ_{max} (log ε) 272.4 (4.01), 361.2 (4.21); IR (KBr) ν_{max} 3419, 2927. 1654, 1610, 1591, 1514, 1455, 1384, 1280, 1171, 1123, 1031, 827 cm⁻¹; ¹H-NMR (acetone- d_6 , 250 MHz) δ 7.42 (1H, dd, J = 15.4, 9.4 Hz, H-5). 7.21 (1H, d, J = 1.8 Hz, H-2"), 7.05 (2H, d, J = 8.4 Hz, H-2'/H-6'), 7.01 (1H, dd, J = 8.4, 1.8 Hz. H-6"), 6.98 (1H, dd, J = 15.4, 9.4 Hz, H-6), 6.95 (1H, d, J = 15.4 Hz, H-7), 6.81 (1H, d, J = 8.4 Hz, H-5").6.72 (2H, d, J = 8.4 Hz, H-3'/ H-5'). 6.23 (1H, d, J = 15.4 Hz. H-4), 3.87 (3H. s, 3"-OCH₃), 2.84 (2H, t, J = 5.3 Hz, H-2). 2.81 (2H, t. J = 5.3 Hz. H-1): ¹³C-NMR (acetone- d_6 , 62.9 MHz) δ 199.3 (C-3), 156.4 (C-4'), 149.0 (C-3"), 148.7 (C-4"), 143.8 (C-5), 142.3 (C-7), 133.0 (C-1"), 130.0 (C-2'/C-6'), 129.3 (C-1'), 129.2 (C-4), 125.2 (C-6), 122.6 (C-6"), 116.0 (C-5"), 115.9 (C-3'/C-5'), 110.5 (C-2"), 56.2 (3"-OCH₃), 42.8 (C-2), 30.1 (C-1); HRFABMS m/z 325,1438 (calcd. for $C_{20}H_{21}O_4 [M + H]^-$, 325.1440).

Compound 3: colorless amorphous solid (10 mg); $[\alpha]_D^{25}$ +4.3° (c = 0.12, MeOH); UV (MeOH) λ_{max} (log ε) 223.0 (3.93), 280.0 (3.48); IR (KBr) v_{max} 3340, 2934, 1613, 1517, 1454, 1363, 1233, 1157, 1032, 824 cm^{-1, 1}H-NMR (CD₃OD, 250 MHz) δ 6.97 (2H, d, J = 8.4 Hz, H-2'/H-6'), 6.74 (1H, d, J = 1.6 Hz, H-2"), 6.66 (1H, d, J = 8.0 Hz, H-5"), 6.65 (2H, d, J = 8.4 Hz, H-3'/H-5'), 6.59 (1H, dd, J = 8.0, 1.6 Hz, H-6"), 3.79 (3H, s. 3"-OCH₃), 3.79 (2H, m, H-3, 5), 2.70-2.46 (4H, m, H-1, 7), 1.70-1.60 (4H, m, H-2, 6), 1.51 (2H, t, J =6.1 Hz, H-4); ¹³C-NMR (CD₃OD, 62.9 MHz) δ 156.3 (C-4'), 148.8 (C-3"), 145.7 (C-4"), 135.2 (C-1"), 134.4 (C-1'), 130.3 (C-2'/C-6'), 121.8 (C-6"), 116.1 (C-3'/C-5'), 116.0 (C-5"), 113.2 (C-2"), 68.6 (C-3/C-5), 56.3 (3"-OCH₃), 45.6 (C-4), 41.4 (C-6), 41.3 (C-2), 32.6 (C-1), 32.1 (C-7); HRFABMS m'z 347.1814 (calcd. for C₂₀H₂₁O₄ [M + H]⁻, 347.1858).

Preparation of Mosher's Esters. To each 1 mg of 1 and 3 in 0.5 mL of CH₂Cl₂ were added sequentially 0.2 mL of pyridine. 0.5 mg of 4-(dimethylamino)pyridine. and 12.5 mg of (*R*)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl [(*R*)-MTPA] chloride. separately.²⁰⁻²² The mixture was left at room temperature overnight and purified over a microcolumn (0.6 × 6 cm) of silica gel (230–400 mesh) eluted with 3–4 mL of hexane-CH₂Cl₂ (1 : 3). The elute was dried. CH₂Cl₂ (5 mL) was added, and the CH₂Cl₂ was washed using 1% NaHCO₃ (5 mL × 2) and H₂O (5 mL × 2). The washed elute was dried *in vacuo* to give the S-Mosher esters (1_S and 3_S) of 1 and 3, respectively. The R-Mosher esters (1_R and 3_R) of 1 and 3 were prepared from (S)-MTPA chloride, respectively.

Cytotoxicity Bioassay. The tetrazolum-based colorimetric assay (MTT assay) was used for the *in vitro* assay of cytotoxicity against human colon carcinoma (HT-29) and human breast carcinoma (MCF-7) cells.²³

Acknowledgments. This work was supported by Korea Research Foundation Grant (KRF-2002-005-E00019).

References

- Binder, R. G.; Benson, M. E.; Flash, R. A. Phytochemistry 1989, 28, 2799-2801.
- Gupta, S. R.: Ravindranath, B.; Seshadri, T. R. *Phytochemistry* 1972, 11, 2634-2636.
- 3. Muller, W.-U.: Leistner, E. Phytochemistry 1978, 17, 1739-1742.
- Hirakawa, K.: Ogiue, E.: Motoyoshiya, J.: Yajima, M. Phytochemistry 1986, 25, 1494-1495.
- Talpatra, S. K.; Karmacharta, B.; De, S. C.; Talapatra, B. Phytochemistry 1988, 27, 3929-3932.
- Pardhasaradhi, M.; Hari, B. M. Phytochemistry 1978, 17, 2042-2043.
- Hedin, P. A.; Collum, D. H.; Langhans, V. E.; Grave, C. H. J. Agric. Food Chem. 1980, 28, 340-342.
- 8. Son, J. K. Arch. Pharm. Res. 1995, 18, 203-205.
- Joe, Y. K.; Son, J. K.; Park, S. H.; Lee, I. J.; Moon, D. C. J. Nat. Prod. 1996, 59, 159-160.
- Lee, S. W.; Lee, K. S.; Son, J. K. Planta Med. 2000, 66, 184-186.
- Li, G.; Xu, M. L.; Choi, H. G.; Lee, S. H.; Jahng, Y. D.; Lee, C. S.; Moon, D. C.; Woo, M. H.; Son, J. K. *Chem. Pharm. Bull.* **2003**, *51*, 262-264.
- Kim, S. H.; Lee, K. S.; Son, J. K.; Je, G. H.; Lee, J. S.; Lee, C. H.; Cheong, C. J. J. Nat. Prod. 1998, 61, 643-645.
- Lee, K. S.; Li, G.; Lee, C. S.; Woo, M. H.; Lee, S. H.; Jahng, Y. D.; Son, J. K. J. Nat. Prod. 2002, 65, 1707-1708.
- Min, B. S.; Lee, H. K.; Lee, S. M.; Kim, Y. H.; Bae, K. H.; Otake, T.; Nakamura, N.; Hattori, M. Arch. Pharm. Res. 2002, 25, 441-445.
- Min, B. S.; Nakamura, N.; Miyashiro, H.; Kim, Y. H.; Hattoro, M. Chem. Pharm. Bull. 2000, 48, 194-200.
- Li, G.; Lee, S. Y.; Lee, K. S.; Lee, S. W.; Kim, S. H.; Lee, S. H.; Lee, C. S.; Woo, M. H.; Son, J. K. Arch. Pharm. Res. 2003, 26, 466-470.
- Li, B. L.; Pan, Y. J. Bull. Korean Chem. Soc. 2002, 23, 617-618.
- Jeon, Y. W.; Jung, J. W.; Kang, M.; Chung, I. K.; Lee, W. Bull. Korean Chem. Soc. 2002, 23, 391-394.
- Yokosuka, A.; Mimaki, Y.; Sakagami, H.; Sashida, Y.J. Nal. Prod. 2002, 65, 283-289.
- 20. Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 95, 512-519.
- Rieser, M. J.; Hui, Y. H.; Rupprecht, J. K.; Kozlowski, J. F.; Wood, K. V.; McLaughlin, J. L.; Hanson, P. R.; Zhuang, A.; Hoye, T. R. J. Am. Chem. Soc. 1992, 144, 10203-10213.
- Ryu, G.; Choi, B. W.; Lee, B. H. Bull. Korean Chem. Soc. 2002, 23, 1429-1434.
- Rubinstein, L. V.; Shoemaker, R. H.; Paul, K. D.; Simon, R. M.; Tosini, S.; Skehan, P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Nat. Cancer Inst. 1990, 82, 1113-1118.