Synthesis and Glycosylation of 2'-(Benzyloxycarbonyl)benzyl Glycosides as Glycosyl Donors

Kwan Soo Kim, ${ }^{*}$ Moon Eui Lee, and Jin Won Cho ${ }^{*}$
Center for Bioactive Molecular Hybrids and Deparment of Chemistry and
${ }^{\top}$ Department of Biologn, Yonsei University, Seonl 120-749. Korea Recened October 23, 2003

Key Words: 2'-(Benzyloxycarbonyl)benzyl glycosides, Glycosylation, Glycosyl donor

Recent advances in glycobiology have directed an increased attention to efficient and stereoselective glycosylation of oligosaccharides. ${ }^{1}$ Devising new glycosyl donors and developing new activation systems for existing donors have led to major advances in this field. Nevertheless, there still remains a need for more efficient and generally applicable new glycosyl donors although several glycosyl donors are presently available. ${ }^{2}$ In fact, there have been recent reports on new glycosyl donors and new activation systems. ${ }^{3}$ We have also recently reported a novel type of glycosyl donors, the 2'-carboxybenzyl (CB) glycoside B, as shown in Figure 1 for stereoselective β-mannopyranosylation and 2 -deoxyglycosylation ${ }^{5}$ and applied this methodology to the synthesis of a tetrasaccharide. ${ }^{6}$ The CB glycoside B was prepared from the 2'-(benzyloxycarbonyl)benzyl (BCB) glycoside A by the selective removal of its benzyl ester functionality, ${ }^{\text {, }}$ Treatment of the CB glycoside B with triflic anhydride followed by spontaneous lactonization of the resulting glycosyl triflate C afforded the oxocarbenium ion D by extrusion of stable phthalide. Reaction of the oxocarbenium ion D with the glycosyl acceptor (Sugar-OH) gave the desired glycoside \mathbf{E} as shown in Figure 1. The direct generation of the oxocarbenium ion \mathbf{D} from the BCB glycoside \mathbf{A} would be more convenient than that from the CB glycoside \mathbf{B} through the triflate \mathbf{C}. Thus, we envisaged that Lewis acidmediated lactonization of the BCB glycoside A would liberate stable phthalide to generate the oxocarbenium ion D as shown in Figure 1. Herein we report the glycosylation of the BCB glycoside A with glycosyl acceptors in the presence of TMSOTf as a promoter.

Coupling of the tetrabenzoylglucosyl bromide 1^{7} and
benzyl 2-(hydroxymethyl)benzoate (2) ${ }^{4}$ in the presence of mercury salts at $0{ }^{\circ} \mathrm{C}$ in acetonitrile gave the BCB tetrabenzoylglucoside 3 in 84% yield. The BCB tetrabenzylglucoside $\mathbf{5}$, on the other hand, was prepared by the benzylation of the known BCB glucopyranoside 4^{4} as shown in Scheme 1. The BCB 2,3-di-O-benzoylcyclohexylideneglucoside 7 was also prepared from the compound 4 by the two-step sequence: (i) selective cyclohexylidenation of the compound 4 with 1,1-dimethoxycyclohexane in the presence of $p-\mathrm{TsOH}$ to afford the diol 6 in 82% yield and (ii) benzoylation of the resulting diol 6 with benzoyl chloride to give the compound 7 in 90% yield as shown in Scheme 1.

Glycosylation of the BCB tetrabenzoylglucoside 3 with the glycosyl acceptor 8 was carried out in acetonitrile by addition of TMSOTf at $0^{\circ} \mathrm{C}$ and allowing the reaction mixture to warm over 3 h to room temperature to afford only the β-disaccharide 9 in 71% yield as shown in Scheme 2. The fact that the β-disaccharide 9 was obtained exclusively without formation the α-disaccharide indicates that the participating group at $\mathrm{C}-2$ is working well in the glycosylation with the BCB glycoside. Trimethylsilyl triflate was found to be a good promoter but other lewis acids, such as $\mathrm{Br}_{3} \cdot \mathrm{O}_{\mathrm{E}}^{2} 2$ and SnCl_{4}, did not activate the glycosyl donor 3 . The same glycosylation reaction in methylene chloride instead of acetonitrile resulted in a little lower yield of the disaccharide 9 while $\mathrm{Et}_{2} \mathrm{O}$ and THF were found to be not proper solvents for the present glycosylation. The 'armed' BCB tetrabenzylglucoside 5 was a more reactive glycosyl donor than the "disarmed" BCB tetrabenzoylglucoside $\mathbf{3}$ as expected ${ }^{8}$ and the glycosylation of 5 proceeded at lower temperature than that of $\mathbf{3}$. Thus, glycosylation of the

A $R=B n$
B $\mathrm{R}=\mathrm{H}$
C $\mathrm{R}=\mathrm{Tf}$

D

Sugar-OH

E

Figure 1

[^0]

Scheme 1
glycosyl donor 5 with the glycosyl acceptor 8 at $-25^{\circ} \mathrm{C}$ in the presence of TMSOTf in aceronitrile provided a separable mixture of disaccharides 10α and $10 \beta(1: 3)$ in 78% yield. On the other hand, the $\mathrm{BCB} 4,6$-cyclohexylideneglucoside 7 showed intermediate reactivity in the glycosylation. Glycosylation of the glycosyl donor 7 with the acceptor 8 in the presence of TMSOTf in acetonitrile proceeded at $0^{\circ} \mathrm{C}$ to afford only β-disaccharide 11 in 73% yield.
In summary, BCB glycosides, which had been used as the precursor to a novel type of glycosyl donors, CB glycosides.
were also found to be good glycosyl donors. Glycosylation of BCB glycosides with glycosyl acceptors employing [MSO] f as a promoter readily afforded disaccharides.

Experimental Section

Synthesis of 2-(Benzyloxycarbonyl)benzyl 2,3,4,6-tetra-O-benzoyl- β-D-glucopyranoside (3). To a stirred solution of 2,3,4,6-tetra- O-benzoyl- α-D-glucopyranosyl bromide $(1)^{7}(1.86 \mathrm{~g}, 2.8 \mathrm{mmol})$ and benzyl 2 -(hydroxymethyl)-

3
$+$

Scheme 2
benzoate (2) ${ }^{4}\left(0.82\right.$ g. 3.4 mmol, 1.2 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ (5 mL) in the presence of +A molecular sieves were added mercury (II) bromide ($1.22 \mathrm{~g}, 3.4 \mathrm{nmmol} .1 .2$ equiv) and mercury (II) cyanide ($0.85 \mathrm{~g}, 3.4 \mathrm{mmol}, 1.2$ equiv) at $0^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for further 10 min , the reaction mixture was filtered and the filtrate was concentrated. The resulting oil was dissolved in EtOAc (50 mL) and the solution was washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and brine (50 mLL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo and the residue was purified by silica gel flash column chromatography (n-hexane/EtOAc. 2 : 1. $\mathrm{v} / \mathrm{v})$ to afford the compound $3(1.94 \mathrm{~g}, 84 \%)$ as white solids: mp 47-50 ${ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.45$ (n-hexane/EtOAc. $2: 1 . v / v$): $[\alpha]_{D}^{20}$ $=+9.6\left(\mathrm{c}=2.7 . \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta$ $4.11-4.18(\mathrm{~m} .1 \mathrm{H}) .4 .49(\mathrm{dd}, J=5.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}$. $J=3 . \mathrm{I} .12 .1 \mathrm{~Hz}, \mathrm{IH}) .4 .97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{IH}), 5.19(\mathrm{~d} . J=$ $14.7 \mathrm{~Hz} .1 \mathrm{H}), 5.2 \mathrm{I}(\mathrm{s} .2 \mathrm{H}), 5.34(\mathrm{~d}, J=14.7 \mathrm{~Hz}, \mathrm{IH}) .5 .65-$ $5.77(\mathrm{~m} .2 \mathrm{H}) .5 .92(\mathrm{t}, J=9.6 \mathrm{~Hz} .1 \mathrm{H}) .7 .21-8.05(\mathrm{~m}, 29 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 63.1 \mathrm{l} .66 .7,69.5 .69 .9,72.1$. 72.4, 73.1. 100.9. 127.2. 127.5, 127.7, 128.3, 128.4. 128.5. 128.7. 128.9, 129.4, 129.8. 129.9. 130.7, 132.7. 133.2. 139.8. 165.3(2), 165.9, 166.5; $\mathrm{IR}(\mathrm{NaCl}) 1256.1453$. 1604. $1736 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{4 i 9} \mathrm{H}_{410} \mathrm{O}_{13}: \mathrm{C}, 71.70 ; \mathrm{H} .4 .91$. Found: C. 71.67 : H, 4.83.
2-(Benzyloxycarbonyl)benzyl 2,3,4,6-Tetra-O-benzyl-B-D-glucopyranoside (5). To a solution of 2-(benzyl-oxycarbonyl)benzyl- β-D-glucopyranoside (4$)^{4}$ (3.28 g .8 .1 mmol. 1.0 equiv) and benzyl bromide (3.87 mL .32 .5 nmol . 4.0 equiv) in DMF (30 mL) was added sodium hydride (1.3 g. 32.5 mmol, 4.0 equiv) at $0^{\circ} \mathrm{C}$ and then the ice bath was removed. After stirring at room temperature for 1 h . the reaction misture was quenched with water (50 mL) and extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and brine (50 mL). dried (MgSO_{4}). and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (n-hexane/EtOAc. $4: 1 . v / v$) to afford the compound 5 ($7.48 \mathrm{~g} .85 \%$): $\mathrm{R}_{f}=0.50$ (7 -hexane/EtOAc. $4: 1 . \mathrm{v} / \mathrm{v}):[\alpha]_{\mathrm{D}}^{20}=-1.72\left(\mathrm{c}=3.3 . \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H}$ NMR $(250$ $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right)$ § 3.43-3.46(m, 1H), $3.55-3.74(\mathrm{~m}, 5 \mathrm{H}), 4.50-$ $4.65(\mathrm{~m} .4 \mathrm{H}) .4 .75-4.85(\mathrm{~m} .3 \mathrm{H}) .4 .93-5.02(\mathrm{~m}, 2 \mathrm{H}) .5 .15(\mathrm{~d}$. $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}) .5 .30(\mathrm{~s} .2 \mathrm{H}), 5.40(\mathrm{~d} . J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$. $7.15-7.48(\mathrm{~m} .27 \mathrm{H}) .7 .79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) .8 .03(\mathrm{dd} . J=$ 13. $7.8 \mathrm{~Hz}, 1 \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 66.8 .68 .8$. $69.4,73.6,75.1(2), 75.8,78.0,82.5,84.9,103.2,127.1$. 127.6. $127.7(2)$. $127.8 .127 .9,128.0(2)$. 128.1. 128.2 . 128.4(2). 128.5(2), 128.7. 130.8, 132.7. 136.0, 138.2, 138.5. 138.8. 140.8. 166.7. IR $\left(\mathrm{CHCl}_{3}\right.$ film $) 1077.1266 .1729 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{490} \mathrm{H}_{48} \mathrm{O}_{8}$: C. 76.94: H. 6.33. Found: C. 76.98: H. 6.35.

2-(Benzyloxycarbonyl)benzyl 4,6-O-Cyclohexylidene-β-D-glucopyranoside (6). A solution of 2-(benzyloxycarbonyl) benžl- β-D-glucopyranoside (4) ${ }^{+}$(934 mg. 2.31 mmol. 1.0 equiv). 1.1-dimethoxycyclohexane (666 mg .4 .62 mmol. 2.0 equiv). and $p-\mathrm{TsOH}(8 \mathrm{mg} .0 .46 \mathrm{mmol} .0 .2$ equiv) in DMF (10 mL) was stirred at $60^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3} (30
$\mathrm{mL})$, and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2$ $\times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vocto. The residue was purified by silica gel flash column chromatography (n-hexane/EtOAc. $1: 2, \mathrm{v} / \mathrm{v}$) to afford the compound 6 ($917 \mathrm{mg}, 82 \%$) as white solids: mp $58-60^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (n-hexane/EtOAc. $1: 2 . \mathrm{v} / \mathrm{v}$): $[\alpha]_{\mathrm{D}}^{20}=$ $-34.9\left(\mathrm{c}=1.3 . \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 1.43-$ $2.02(\mathrm{~m} .10 \mathrm{H}) .2 .87(\mathrm{~s} .1 \mathrm{H}) .3 .06(\mathrm{~s} .1 \mathrm{H}) .3 .22-3.32(\mathrm{~m} .1 \mathrm{H})$, $3.48-3.81(\mathrm{~m} .5 \mathrm{H}), 3.91(\mathrm{dd}, J=5.5,10.7 \mathrm{~Hz} .1 \mathrm{H}), 4.78(\mathrm{~d} . J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=13.0$ $\mathrm{Hz} .1 \mathrm{H}), 5.34(\mathrm{~s}, \mathrm{lH}) .7 .32 \cdot 7.64(\mathrm{~m}, 8 \mathrm{H}) .7 .99(\mathrm{dd}, J=1.1$, $7.7 \mathrm{~Hz} . \mathrm{lH}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz} . \mathrm{CDCl}_{2}\right) \delta 22.7,22.9,25.7$, $27.9,38.0 .61 .5 .67 .1 .67 .7 .70 .2,72.4,73.9,74.8 .100 .0$. 103.1. 127.9, 128.3. 128.4. 128.7, 128.8, 129.0. 130.9. 132.7, 135.9, 139.4. 167; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$ film $) 1084.1269 .1729$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{8}: \mathrm{C}, 66.93: \mathrm{H} .6 .66$. Found: C, 66.93: H, 6.68 .

2-(Benzyloxycarbonyl)benzyl 2,3-Di- O-benzoyl-4,6-O-cyclohexylidene- β-D-glucopyranoside (7). A solution of 2(benzy loxycarbonyl)benzyl 4.6-O-cyclohexylidene- β-Dglucopyranoside (6) ($400 \mathrm{mg}, 0.83 \mathrm{mmol} .1 .0$ equiv) and benzoyl chloride ($350 \mathrm{mg}, 2.49 \mathrm{mmol} .3 .0$ equiv) in pyridine (5 mL) was stirred at room temperature for 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10$ mL), and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2$ $\times 15 \mathrm{~mL})$ and brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$. and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (n-hexane/EtOAc. $2: 1, \mathrm{v} / \mathrm{v}$) to afford the compound 7 ($516 \mathrm{mg}, 90 \%$) as white solids: mp $66-68{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (n-hexane/EtOAc. $2: 1 . \mathrm{v} / \mathrm{v}$): $[\alpha]_{\mathrm{D}}^{14}=$ $+15.6\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.27-$ $2.09(\mathrm{~m} .10 \mathrm{H}) .3 .48-3.58(\mathrm{~m}, \mathrm{IH}) .3 .85-4.06(\mathrm{~m}, 3 \mathrm{H}) .4 .87$ $(\mathrm{d}, J=7.3 \mathrm{~Hz} .1 \mathrm{H}) .5 .16(\mathrm{~d} . J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~s} .2 \mathrm{H})$, $5.33(\mathrm{~d} . J=15.0 \mathrm{~Hz} .1 \mathrm{H}), 5.50-5.68(\mathrm{~m} .2 \mathrm{H}), 7.15-7.99(\mathrm{~m}$, $19 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.5 .22 .7,25.5,27.6$. 37.8.61.5. 66.7.67.7. 69.5. 71.1, 72.7(2). 99.9. 101.4. 127.0. 127.2 . 127.3, 127.8. 128.2. 128.4, 128.7. 129.5. 129.6. 129.7. 129.9(2), 130.6. 132.7. 133.1, 133.2, 135.9. 140.1. 165.3. 165.7. 166.4: IR $\left(\mathrm{CHCl}_{3}\right.$ film $)$ 1111. 1275. 1407. 1637. $1743 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{O}_{110}$ C. $71.08: \mathrm{H}$, 5.82. Found: C. 71.06: H. 5.79.

Methyl (2,3,4,6-Tetra-O-benzoyl- β-D-glucopyranosyl)$(1 \rightarrow 6)-2,3,4$-tri- O-benzoyl- α-D-glucopyranoside (9). A solution of 2-(benzyloxycarbonỵl)benzyl 2.3.4.6-tetra- O -benzoyl- β-D-glucopyranoside (3) ($31 \mathrm{mg} .0 .038 \mathrm{mmol}, 1.0$ equiv). methyl 2.3.4-tri- O-benzoyl- α-D-glucopyranoside (8) ($59 \mathrm{mg} .0 .11 \mathrm{mmol}, 3.0$ equiv) and TMSOTf (42 mg .0 .19 mumol. 5.0 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 10 min . and allowed to warm over 3 h to room temperature. The reaction mixture was quenched by addition of saturated aqueous NaHCO_{3} solution (2 mL) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layer was washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (toluene/EtOAc. $10: 1, \mathrm{v} / \mathrm{v}$) to
afford the β-disaccharide 9 ($29 \mathrm{mg}, 71 \%$) as white solids: mp 91-93 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ (toluene/EtOAc, $10: 1, \mathrm{v} / \mathrm{v}$): $[\alpha]_{D}^{20}=$ $+39.0\left(\mathrm{c}=4.0 . \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 3.11$ $(\mathrm{s} .3 \mathrm{H}) .3 .78(\mathrm{dd}, J=7.5 .11 .5 \mathrm{~Hz} .1 \mathrm{H}), 4.08-4.16(\mathrm{~m}, 2 \mathrm{H})$. $4.20-4.24(\mathrm{~m} . \mathrm{IH}) .4 .45(\mathrm{dd}, J=5.5,12.0 \mathrm{~Hz}, \mathrm{lH}), 4.60(\mathrm{dd}$. $J=3.0 .12 .0 \mathrm{~Hz}, \mathrm{IH}) .4 .94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, \mathrm{IH}), 4.97(\mathrm{~d} . J=$ $8.0 \mathrm{~Hz}, \mathrm{IH}) .5 .09(\mathrm{dd}, J=3.5 .10 .0 \mathrm{~Hz} .1 \mathrm{H}) .5 .31(\mathrm{t} . J=10.0$ $\mathrm{Hz}, \mathrm{IH}) .5 .56(\mathrm{dd}, J=8.5 .18 .5 \mathrm{~Hz} .1 \mathrm{H}), 5.65(\mathrm{t}, J=10.0 \mathrm{~Hz}$. $1 \mathrm{H}), 5.59(\mathrm{t}, J=9.5 \mathrm{~Hz} .1 \mathrm{H}), 6.07(\mathrm{t}, J=10.0 \mathrm{~Hz} . \mathrm{H}), 7.23-$ $8.00(\mathrm{~m}, 35 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.2 .63 .2$. $68.8,69.1 .69 .9(2), 70.5,72.1 .72 .2,72.5 .73 .0 .96 .6,101.9$. 128.5. 129.0. 129.3, 129.8, 130.0, 133.3, 133.6, 165.3(2). 165.6. 165.8(2), 165.9. 166.3: $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$ film $)$ 1216, 1455. $1606.173 \mathrm{I} \mathrm{cm}^{-1}$.
Methyl (2,3,4,6-Tetra-O-benzyl- α, β-D-glucopyranosyl)$(1 \rightarrow 6)$-2,3, + -tri- O-benzoyl- α-D-glucopyranoside (10). A solution of 2-(benzyloxycarbonyl)benzyl 2,3.4,6-tetra- O -benzyl- β-D-glucopyranoside (5) ($92 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.0$ equiv), methyl 2,3.4-tri- O-benzoyl- α-D-glucopyranoside (8) ($182 \mathrm{mg} .0 .36 \mathrm{mmol}, 3.0$ equiv), and TMSOTf ($65 \mu \mathrm{~L} .0 .36$ mmol. 3.0 equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was stirred at $-25^{\circ} \mathrm{C}$ for 3 h and the reaction mixture was quenched with saturated aqueous NaHCO_{3} solution (2 mL) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layer was washed with brine (20 mL), dried (MgSO_{4}), and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (toluene/EtOAc. 10:1. v/v) to afford the disaccharide $\mathbf{1 0}(97 \mathrm{mg}, 78 \% . \alpha ; \beta=1: 3) . \mathbf{1 0 \alpha}$. colorless oil, $\mathrm{R}_{f}=0.60$ (n-hexane/EtOAc, $2: \mathrm{I} . \mathrm{v} / v$): $[\alpha]_{\mathrm{D}}^{10}=$ $+54.0\left(\mathrm{c}=1 . \mathrm{I} . \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 3.43$ $(\mathrm{s} .3 \mathrm{H}) .3 .48-3.66(\mathrm{~m} .5 \mathrm{H}) .3 .81(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{dd} . J=9.3$. $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.28(\mathrm{~m}, 1 \mathrm{H}) .4 .37(\mathrm{~d} . J=12.3 \mathrm{~Hz} .1 \mathrm{H})$. $4.44(\mathrm{~d} . J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) .4 .55(\mathrm{~d} . J=12.3 \mathrm{~Hz}, 1 \mathrm{H}) .4 .62(\mathrm{~d}$. $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}) .4 .73(\mathrm{~s} .2 \mathrm{H}), 4.79(\mathrm{~s} .1 \mathrm{H}), 4.81(\mathrm{~d}, J=12.5$ $\mathrm{Hz}, \mathrm{IH}) .4 .9 \mathrm{I}(\mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{IH}) .5 .19-5.24(\mathrm{~m}, 2 \mathrm{H}) .5 .52$ (dd. $J=9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}$). 6.13 (dd. $J=9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}$). $7.11-7.57(\mathrm{~m}, 29 \mathrm{H}), 7.80-8.09(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $(63 \mathrm{MHz}$. CDCl_{3}) $\delta 55.7,66.8,68.4,68.7,69.8,70.4,70.8 .72 .4 .73 .3$. $73.5(2), 74.9,75.7,80.1,82.0,96.9 .97 .4,127.6,127.8(2)$. 128.0. 128.1, 128.4(2). 128.5(2), 128.7. 129.3, 129.5, 129.9. 130.0. 130.1. 133.2, 133.5(2), 138.0. 138.5, 138.7, 139.0. 165.4. 166.0(2): IR (NaCl) 1101. 1278. $1736 \mathrm{~cm}^{-1}$: Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{6 i j} \mathrm{O}_{14}:$ C. 72.36: H. 5.88. Found: C. 72.31: H. 5.87. 10ß: colorless oil. $\mathrm{R}_{f}=0.65$ (n-hexane/EtOAc. $2: 1$. $\mathrm{v} / \mathrm{v}):[\alpha]_{\mathrm{D}}^{20}=+3.48\left(\mathrm{c}=1.4, \mathrm{CHCl}_{3}\right):{ }^{l} \mathrm{H}$ NMR $(250 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) \delta 3.37(\mathrm{~s} .3 \mathrm{H}) .3 .43-3.71(\mathrm{~m} .6 \mathrm{H}) .3 .80(\mathrm{dd}, J=7.5$. $10.8 \mathrm{~Hz} .1 \mathrm{H}) .4 .10-4.14(\mathrm{~m} .1 \mathrm{H}) .4 .35-4.55(\mathrm{~m} .5 \mathrm{H}) .4 .66-$ $4.82(\mathrm{~m} .3 \mathrm{H}) .4 .91(\mathrm{~d} . J=10.9 \mathrm{~Hz} .1 \mathrm{H}) .5 .06(\mathrm{~d} . J=10.9 \mathrm{~Hz}$. $1 \mathrm{H}) .5 .20-5.32(\mathrm{~m} .2 \mathrm{H}) .5 .47$ (dd. $J=9.7 .9 .7 \mathrm{~Hz} .1 \mathrm{H}) .6 .17$ (dd. $J=9.7 .9 .7 \mathrm{~Hz} .1 \mathrm{H}$). 7.13-7.53 (m, 29H). 7.83-7.98 (m. $6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.6,68.8,69.0 .69 .1$. $70.0,70.6,72.3,73.6,74.9,75.0,75.1,75.8,77.8,82.5,84.7$. 96.9. 104.1. 127.7. 127.8. 127.9. 128.0. 128.1. 128.3. 128.4. $128.5(2)$. 129.1. 129.2. 129.4, 129.8, 130.0. 130.1. 133.2. 133.5(2). 138.3. 138.6. 138.8, 165.6. 165.9. 166.0: IR (CHCl_{3} film) 2931. 1729. 1281. $1103 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{6 i \mathrm{ii}} \mathrm{O}_{14}$: C. 72.36: H. 5.88 . Found: C. 72.34: H. 5.88.

Methyl (2,3-Di- O-benzoyl-4,6- O-cyclohexylidene- β-D-glucopyranosyl)-($1 \rightarrow 6$)-2,3,4-tri- O-benzoyl- α-D-glucopyranoside (11). A solution of 2 -(benzyloxycarbonyl)benzyl 2,3-di- O-benzoyl-4,6-O-cyclohexylidene- β-D-glucopyranoside (7) (50 mg .0 .072 mmol .1 .0 equiv). methyl 2.3.4-tri-O-benzoyl- α-D-glucopyranoside (8) (110 mg .0 .22 mmol. 3.0 equiv). and TMSOTf ($80 \mathrm{mg} . ~ 0.36 \mathrm{mmol} .5 .0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 3 h and the reaction misture was quenched with saturated aqueous NaHCO_{3} solution (2 mL) and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 15 \mathrm{~mL}$). The combined organic layer was washed with brine (15 mL), dried (MgSO_{4}). and concentrated in vacuo. The residue was purified by silica gel flash column chromatography (n-hexane/EtOAc. $2: 1 . v / v$) to afford the disaccharide 11 ($51 \mathrm{mg} .73 \%$) as white solids: $\mathrm{mp} 79-82^{\circ} \mathrm{C}$. $\mathrm{R}_{f}=0.68$ (n-hexane/EtOAc. $\left.1: 2 . \mathrm{v} / \mathrm{v}\right):[\alpha]_{\mathrm{D}}^{20}=+33.5(\mathrm{c}=$ 1.0, CHCl_{3}). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-1.69(\mathrm{~m}$, $10 \mathrm{H}) .3 .39(\mathrm{~s} .3 \mathrm{H}) .3 .74(\mathrm{dd}, J=6.0 .11 .3 \mathrm{~Hz} .1 \mathrm{H}), 3.94-4.04$ $(\mathrm{m}, 2 \mathrm{H}) .4 .24-4.30(\mathrm{~m} .1 \mathrm{H}), 4.39-4.5 \mathrm{I}(\mathrm{m}, \mathrm{lH}) .4 .53(\mathrm{dd} . J=$ $5.4,7.9 \mathrm{~Hz} . \mathrm{lH}), 5.19-5.32(\mathrm{~m}, 3 \mathrm{H}) .5 .54-5.61(\mathrm{~m} .2 \mathrm{H}) .5 .81$ (dd. $J=1.1,5.3 \mathrm{~Hz} . \mathrm{IH}$). $6.12-6.20(\mathrm{~m}, 1 \mathrm{H}), 7.23-8.01$ (m, 25 H). ${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.6 .24 .0,25.2,34.6$. 36.5.55.7. 66.8. 66.9.69.2. 69.5. 70.7.72.3. 73.7.74.8. 81.0. 82.7, 97.0. 106.7. 110.0. 128.4. 128.5, 128.6, 129.1, 129.2, 129.4. 129.8 . $130.0(2)$. $133.2,133.5,133.6,165.0,165.2$, 165.3, 165.9(2): IR (CHCl_{3} film) 1104. 1275. 1460, 1736 cm^{-1}. Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{52} \mathrm{O}_{16}$: $\mathrm{C}, 67.77: \mathrm{H}, 5.48$. Found: C, 67.76: H, 5.44.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2001-042-D00049). Authors thank CBMH.

References

1. (a) Varki. A. Gbocobiology 1993. 3. 97. (b) Dwek. R. A. Chem. Rev 1996. 96, 683. Bertozzi C. R.: Kiessling. L. L. Science 2001. 291.2357.
2. (a) Toshima, K.; Tatsuta, K. Chem Rev 1993. 93, 1503. (b) Davis. B. G. J. Chent Soc., Perkin Trans 12000.2137.
3. (a) Plante. O. J.: Palmacci. E. R.: Andrade. R. B.: Seeberger. P. H. J. Am. Chem. Soc. 2001. 123. 9545. (b) Hinklin. R. J: Kiessling. L. L. J. Am. Chem. Soc. 2001, 123, 3379. (c) Davis. B. J.: Ward, S. J.; Rendle, P. M. Chem Commum. 2001, 189. (d) Petersen. L.; Jensen, K. J. J. Org. Chem. 2001. 66.6268. (e) Garcia. B. A.: Gin. D. Y. J. Am. Chem. Soc. 2000. 122. 4269. (f) Nguyen. H. M.: Chen. Y.: Duron. S. G.: Gin. D. Y. J. Am. Chem. Soc. 2001.123. 8766. (g) Crich. D.: Sun. S. J. Am. Chem. Soc. 1998. 120.435. (h) Crich. D.: Smith. M. J.Am. Chem. Soc. 2001. 123. 9015.
4. Kim. K. S.: Kim, J. H.: Lee, Y. J.: Lee, Y. J.: Park. J. J. Am. Chem. Soc. 2001, 123, 8477.
5. Kim. K. S.: Park. J.: Lee. Y. J.: Seo. Y. S. Angew. Chem. In. Ed. 2003. 42.459.
6. Kim. K. S.: Kang. S. S.: Seo. Y. S.: Kim. H. J.: Lee. Y. J.: Teong K.-S. Synhett 2003.1311.
7. Fletcher, H. G. In Afethods in Carbohydrate Chemisty Whister. R. L.; Wolfrom. M. L. Eds.: Academic Press: New York. U. S. A.. 1963: Vol. 2. p 226.
8. Mootoo. D. R.: Konradsson. P.: Udodong. U.: Fraser-Reid. B. J. Am. Chem. Soc. 1988. 110. 5583.
9. Yamago. S.: Kokubo. K.; Hara, O;; Masuda, S.; Yoshida. J. J. Org. Chem. 2002, 67, 8584.

[^0]: 'To whom correspondence should be addressed. E-mail: kwan(a)yonsei.ac.kr

