A Convenient Synthesis of Optically Active Unhindered Aliphatic Alcohols with High Optical Purity from Non-Racemic $\boldsymbol{\beta}$-Hydroxy Sulfides

Byung Tae Cho ${ }^{*}$ and Dong Jun Kim
Departmet of Chemistry Hallum Entuersity, Chunchon 200-702, Korea
Received June 7, 200\%

Abstract

A general route for the synthesis of optically active unhindered aliphatic alcohols. where the steric demands between two alkyl groups adjacent to the carbinol are similar, with high enantiomeric purity has been developed by sulfoxifation of chiral β-hydroxy sulfides. followed by alkylation and desulfurization.

Key Words : Chiral aliphatic alcohols. Asymmetric reduction, (S)-CBS oxazaborolidine. Chimal β-hydroxy sulfides

Introduction

Some optically active unhindered secondary aliphatic alcohols are extremely important as naturally occurring biologically active substances. For examples. optically active 3-octanol. ${ }^{\text {. }}$ 2-methyl-4-heptanol. ${ }^{-}$2-methỵl-4-octanol. ${ }^{-2}$ 2dodecanol ${ }^{3}$ and acetates of 2-tridecanol ${ }^{4}$ and 2-pentadecanol ${ }^{5}$ are founded as their pheromones in various species of the insect kingdoms. such as Mrmica scabrinodis. Crematogaster castonea, C. hengmei, C. anberti, Metamasius hemiptenus. Drosophilia mulleri. and Drosophilia busckii. One of the simplest methods for obtaining these alcohols may be asymmetric reduction of prochiral ketones. A variety of highly efficient catalytic and stoichiometric asymmetric reducing agents for the reduction of prochiral ketones have been extensively reported. ${ }^{6}$ However most of these reagents provided high enantioselectivity for aryl or hindered alkyl methyl ketones ($\mathrm{R}=$ aryl. t - Bu . or cyclohexyl in RCOMe) where there is enough steric bias. Quite rare success has been published for the reduction of unhindered dialkyl ketones where the steric demands between two alkyl groups adjacent to the carbonyl are similar. Until now. only few asymmetric reducing agents. namely. NB-Enantride. ${ }^{7}$ EapineHydride. ${ }^{8}$ and ($R . R$)- or (S.S)-2.5-dimethylborolane. ${ }^{5}$ have been successfully used for the reduction. On the other hand. chiral β-hydroxy sulfides and their sulfoxides are widely used as starting materials for the synthesis of a variety of chiral intermediates. ${ }^{19}$ Recently we reported the synthesis of non-racemic epoxides and 1.2 -diol starting from chiral β hydrosy sulfides ${ }^{11}$ Also. we have successfully achieved the highly enantioselective synthesis of optically active insect pheromones, such as (R)- and (S)-3-octanol. (R)-2-methyl-4heptanol. (R)-2-methyl-4-octanol and (R)-2-dodecanol. by sulfoxidation of chiral β-hydroxy sulfides. followed by alkylation and desulfurization. ${ }^{12}$ In our continuing programs for applications of oxazaborolidine-catalyzed asymmetric reduction, we developed a general route for the synthesis of optically active unhindered aliphatic secondary alcohols from chiral β-hydroxy sulfides using this methodology.

Results and Discussion

First. we set up our experiments for preparation of three types of dialkyl carbinols $\mathrm{R}_{1} \mathrm{CHOHCH}_{2} \mathrm{R}_{2}$. where $\mathrm{R}_{1}=1^{\circ}$ or 2° alkyl, $\mathrm{R}_{2}=\mathrm{H}$ for type I (runs 1-4. Table 1). $\mathrm{R}_{1}, \mathrm{R}_{2}=1^{\circ}$ alkyl for type II (nuns 5-9). and $\mathrm{R}_{1}=2^{\circ}$ alkyl. $\mathrm{R}_{2}=1^{\circ}$ alkyl for type III (runs 10-13). As shown in Scheme 1. we initially carried out asymmetric borane reduction of these types of ketones using (S)-CBS-oxazaborolidine (7) and N-ethyl- N isopropylaniline borane complex ($\mathbf{8}$) as catalyst and borane carrier, respectively. which is one of the most promising chiral reducing agents to provide high enantioselection for the reduction of various prochiral ketones ${ }^{\text {if }}$ (Method A). For the reduction of ketones in type I. all the reduction examined gave moderate enantioselectivity ($60-64 \%$ ee) except for the case of cyclohexyl methyl ketone ($\mathbf{1 d}$) (98% ee) as expected (runs 1-4). In the case of ketones in type II. the reduction of 2-methyl-4-heptanone (1e) provided (R)-2-methyl-3-heptanol with 18% ee (run 5). The reduction of 3-octanone (1 g) and 3-decanone (1i) afforded the (R)-euriched corresponding alcohols with 61% ee and 59% ee, respectively (rune 7 and 9). For the reduction of ketones in type III having a similar steric bias between two alkyl groups afforded low enantioselectivity'. such as 2% ee for 2-methyl-2-hxanone ($\mathbf{1} \mathbf{j}$) (run 10) and 18% ee for cyclohexyl ethyl ketone (1m) (nun 13). The results are summarized in Table 1. Next. we examined an alternative route of the synthesis of optically active those unhindered aliphatic alcohols using non-racemic β-hydroxy sulfides 4 as starting materials. which are prepared from the 7 -catalyzed reduction of β-keto sulfides according to our previous procedure ${ }^{12.13}$ (Method B). The reduction of relatively unhindered β-keto sulfides. such as $\mathrm{R}_{\mathrm{l}}=i$ - Bu (3a), $n-\mathrm{C}_{5} \mathrm{H}_{11}$ (3b), and $n-\mathrm{C}_{7} \mathrm{H}_{15}$ (3c) in $\mathrm{R}_{1} \mathrm{COCH}_{2} \mathrm{~S}$-toly- p. provided the corresponding product alcohols 4 with $74-81 \%$ ee. In contrast. the cases of $\mathrm{R}_{1}=c-\mathrm{C}_{6} \mathrm{H}_{11}$ (3d) and i - Pr (3e) afforded 99% and 88% ee. respectively. Enantiomeric purities of 4 obtained were determined by HPLC analysis using a 25 cm Whelk-Ol or Chiralcel OD-H chiral column. Optical purities of the resulting alcohols with $74-88 \%$ ee

Method A

a: $\mathrm{R}_{1}=i-\mathrm{Bu}, \mathrm{R}_{2}=\mathrm{H} ; \mathbf{b}: \mathrm{R}_{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}_{2}=\mathrm{H} ; \mathbf{c}: \mathrm{R}_{1}=n-\mathrm{C}_{7} \mathrm{H}_{15} . \mathrm{R}_{2}=\mathrm{H} ; \mathbf{d}: \mathrm{R}_{1}=c_{-}-\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{R}_{2}=\mathrm{H} ; \mathbf{e}: \mathrm{R}_{1}=i-\mathrm{Bu}$. $\mathrm{R}_{2}=\mathrm{Et}, \mathbf{f}: \mathrm{R}_{1}=i-\mathrm{Bu}, \mathrm{R}_{2}=n-\mathrm{Pr}_{;} \mathbf{g}: \mathrm{R}_{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}_{2}=\mathrm{Me} ; \mathbf{h}: \mathrm{R}_{1}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}_{2}=n-\mathrm{Pr} ; \mathbf{i}: \mathrm{R}_{1}=n-\mathrm{C}_{7} \mathrm{H}_{15}, \mathrm{R}_{2}=$ Me: j: $\mathrm{R}_{1}=i-\mathrm{Pr}, \mathrm{R}_{2}=\mathrm{Et} ; \mathbf{k}: \mathrm{R}_{1}=i-\mathrm{Pr}, \mathrm{R}_{2}=n-\mathrm{Pr} ; \mathbf{I}: \mathrm{R}_{1}=c-\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{R}_{2}=\mathrm{Me} ; \mathbf{m}: \mathrm{R}_{1}=c-\mathrm{C}_{6} \mathrm{H}_{11}, \mathrm{R}_{2}=n-\mathrm{Pr}$

Method B
iv

3
4

(S)-7

8
i. $(\mathrm{S})-7(0.1 \mathrm{eq}), \mathbf{8}(1.0 \mathrm{eq}), \mathrm{THF}, 25^{\circ} \mathrm{C}(99 \%)$; ii. $3,5-\left(\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COCl}(1.1 \mathrm{eq})$, TMEDA $(1.1 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(94-97 \%) ;$ ifi. $2 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}$, tt $(97-99 \%)$; iv. m-CPBA (1.0 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt (91-95\%); v. n-BuLi (2. 8 eq), $\mathrm{R}^{\prime} \mathrm{I}(1.1 \mathrm{eq}), \mathrm{THF},-78^{\circ} \mathrm{C}(65-85 \%)$; vi. Raney Ni, MeOH, rt (89-95\%)

Scheme 1

(4a-c and $4 e$) were improved to $95-98 \%$ ee by recrystallization of their 3,5-dinitrobenzoates in appropriate solvents (lable 2). Chiral β-hydroxy sulfoxides 5 obtained in $93-96 \%$ yield from oxidation of 4 with m-chloroperbenzoic acid in dichloromethane were alkylated with Mel, Etl, or n-Prl in the presence of excess $n-\mathrm{BuLi}$ in THF at $-78^{\circ} \mathrm{C}$ to give the corresponding a-alkylated sulfoxides 6 in $72-90 \%$ yield. Finally, treatment of 6 with Raney-nickel in methanol at room temperature ${ }^{14}$ provided optically active aliphatic alcohols 2 with high enantioselectvity in $90-93 \%$ yield. During sulfoxidation, alkylation and desulfurization, racemization was not observed. It is particularly noteworthy that method B provides very high optically active dialkyl carbinols of type II and III where the steric demands between two alkyl groups adjacent to the carbinol are very similar. Of the chiral aliphatic alcohols obtained, (R)-2-
methyl-4-hepanol (2c) and (R)-2-methyl-4-octanol (2f) are identified as the male-produced aggregation pheromones of the West Indian sugarcane weevils Metamasius hemipterus ${ }^{2}$ and (R)-3-octanol $(2 \mathrm{~g})$ is the sex attractant pheromone of Mymica scabrinodis. ${ }^{1}$

Conclusions

We have established a general and convenient route for synthesis of optically active aliphatic alcohols, having a similar steric bias between two alkyl groups adjacent to the carbinol group, with very high enantiomeric purity starting from non-racemic β-hydroxy sulfides. This methodology was utilized for synthesis of optically active insect pheromones, such as (R)-2-methyl-4-hepanol, (R)-2-methyl-4octanol and (R)-3-octanol.

Table 1. Preparation of optically active aliphatic alcohols 2

Type	Run	$\mathrm{R}_{1} \mathrm{CHOHCH}_{2} \mathrm{R}_{2}$ (2)		Compd	Method ${ }^{\text {a }}$		Method $B^{\text {b }}$			
		R_{1}	R		Yield ${ }^{\text {c }}$	\%ee	Yield ${ }^{\text {d }}$	[α] (c, solvent)	\% ee	Contig. ${ }^{\text {. }}$
I	1	i-Bu	H	2a	97	64	85	$\underline{\square}$	98^{7}	R
	2	$n-\mathrm{C}_{5} \mathrm{H}_{4}$	H	2b	96	60%	82	-9.49 (0.95, CHCl_{3})	96	R
	3	$n-\mathrm{C}_{-} \mathrm{H}_{\text {Ls }}$	H	2 c	98	$62^{\prime \prime}$	85	$-6.91\left(1.1, \mathrm{CHCl}_{3}\right)$	$96^{\prime \prime}$	R
	4	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	H	2d	98	$98^{\text {r }}$	93	$+11.59\left(2.23, \mathrm{CCl}_{4}\right)$	99^{r}	R
II	5	i-Bu	Et	2 e	96	18	64	-12.24 (0.4, MeOH)	98	R
	6	i-Bu	n-Pt	2 f	1		62	-11.95 (0.45, MeOH)	$99{ }^{\prime}$	R
	7	$n-\mathrm{C}_{5} \mathrm{H}_{4}$	Me	2 g	97	61^{7}	76	$-6.53\left(1.21, \mathrm{CHCl}_{3}\right)$	96	R
	8	$n-\mathrm{C}_{5} \mathrm{H}_{4}$	n-PT	2 h	1		63	$-3.17\left(0.4, \mathrm{CCl}_{4}\right)$	97	R
	9	$n-\mathrm{C}-\mathrm{H}_{1}$	Me	2i	96	$59^{\prime \prime}$	66	$-8.29\left(0.59, \mathrm{CHCl}_{3}\right)$	$96{ }^{\text {b }}$	R
III	10	${ }_{i}$ - Pr	Et	2 j	94	$2^{\text {in }}$	62	+28.2 (0.95, CHCl_{3}	$97^{\text {h }}$	R
	11	$i-\mathrm{Pr}$	n-PT	2k	1		56	+25.52 (1.15, EtOH)	$97^{\prime \prime}$	R
	12	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	Me	21	98	18^{i}	74	+7.23 (0.68, CHCl_{3})	99^{i}	R
	13	$c-\mathrm{C}_{6} \mathrm{H}_{31}$	n-PT	2 m	1		67	+14.25 (1.93, CHCl_{3})	$99^{\prime \prime}$	R

"Method $\mathrm{A}=[1]:[(S)-7]:[8]=1: 0.1: 1.0$. THF. $25^{\circ} \mathrm{C}$. ${ }^{4}$ Method $\mathrm{B}=$ The product alcohols 2 were prepared from optically active 4 , see experimental
 column. Not detemined. ${ }^{6} \mathrm{By}$ (GC analysis of its acetate using chiral β-Dex (Supelco) column. By GC analysis using chiral α - Dex (Supelco) column. ${ }^{\prime}$ By HPLC analysis of its benzoate using Chiralpak OT (Daicel) column. ${ }^{k}$ By comparison of optical rotation value reported. 'Reaction was not carried out.

Table 2. Preparation of optically active 4

Betore upgrade ${ }^{4}$			After upgrade ${ }^{\text {b }}$		
Cpd	Yield (\%)	\%ee	Yield (\%)	\%ee	Contg.
ta	98°	$81^{\text {c }}$	80 c	$98^{\text {c }}$	S
4 b	97	74	620	96°	S
4 c	98	74^{d}	80	966^{7}	S
4 e	97	88. ${ }^{\text {c.d }}$	87	$98{ }^{7}$	S

" $[3]:[(S)-7]:[8]=1: 0.1: 1$, THF, $25^{\circ} \mathrm{C},{ }^{4} \mathrm{By}$ recrystallization of their 3.5 -dinitrobenzoates. 'Data taken from ref. 12. Determined by HPLC analysis using a Whelk-Ol chiral column.

Experimental Section

General. All operations with air-sensitive materials were carried out under a nitrogen atmosphere in oven-dried glassware. Liquid materials were transferred with a doubleended needle. The reactions were monitored by TLC using silica gel plates and the products were purified by flash column chromatography on silica gel (Merck: 230-400 mesh). NMR spectra were recorded at 200,300 or 400 MHz for ${ }^{1} \mathrm{H}$ and 50,75 or 100 MHz for ${ }^{13} \mathrm{C}$ using $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard in CDCl_{3}. Optical rotations were measured with a high resolution digital polarimeter. Melting points were uncorrected. Enantiomeric excesses (e.e.s) of the products were determined by HPLC analyses using a $4.6 \times$ 25 mm Whell-Ol (Regis), Chiralpak OT or Chiralcel OD-H (Daicel) chiral column and GC analy sis using a $0.25 \mathrm{~nm} \times$ $30 \mathrm{~m} \alpha$-Dex 120 (Supelco). β-Dex 120 (Supelco) or G-TA (Astec) chiral capillary columm.
Materials. Most of organic compounds utilized in this study were conmercial products of the highest purity. They were further purified by distillation when necessary. THF was distilled over sodium benzophenone ketyl and stored in
ampules under nitrogen atmosphere. The CBS reagent 7 and N-ethyl- N-isopropylaniline-borane complex 8 were purchased from the Aldrich Chemical Company, Inc. β-Keto p tolylsulfides 3 were prepared by reaction of 2 -halo-1alkylethanones with the corresponding sodium alkyl or arylthiolates according to the known procedure. ${ }^{15}$

Preparation of 2 Using Method A.

General procedure: To a solution of (S) $-7(0.2 \mathrm{mmol}: 0.2$ $\mathrm{M}, 1.0 \mathrm{~mL}$) in THF was added a solution of N -ethyl- N -isopropylaniline-borane complex $8(2.0 \mathrm{mmol}: 2.0 \mathrm{M} .1 .0$ mL) in THF. To this was added slowly 2 mL of THF solution of 1 (2 mmol) over a period of 1.5 h using a syringe pump at $25^{\circ} \mathrm{C}$. After the addition, the reaction mixture was stirred for 10 min , quenched cautiously with methanol $(0.5 \mathrm{~mL})$. and stirred for additional 30 min . The solvent was evaporated under reduced pressure. The crude alcohols (2) obtained were further purified by a flash column chromatography on silica gel ($230-400$ mesh) using ethyl acetate/hexane ($1 / 4$) as eluent. Enantiomeric purities of $\mathbf{2}$ were determined by GC of HPLC analysis using clural columns (vide infro). The results are summarized in Table 1.

Preparation of 2 Using Method B.

Asymmetric borane reduction of β-keto sulfides (3) using 7 as catalyst: The reduction of 3 c is representative. Using the same procedure. crude $(S)-(+)-1-(p$-tolylsulfanyl)2 -nonanol (tc) was obtained in nearly quantitative yield. It was further purified by a flash column chromatography on silica gel ($230-400$ mesh) using ethyl acetate/hexane ($1 / 4$) as eluent: $R_{f} 0.42$ (EtOAc/hexane $1: 4$); mp $27-28^{\circ} \mathrm{C}$: 97% yield; IR (neat. cm^{-1}): 3417. 2927. 1493, 803; ${ }^{1} \mathrm{H}$ NMR (200 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.87$ (t. $3 \mathrm{H} . J=6.26 \mathrm{~Hz}$), $1.25-1.61(\mathrm{~m}$, $12 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .2 .46(\mathrm{~d}, \mathrm{IH} . J=3.36 \mathrm{~Hz}), 2.78(\mathrm{dd}, 1 \mathrm{H} . J$ $=8.85,13.74 \mathrm{~Hz}) .3 .10(\mathrm{dd} .1 \mathrm{H}, J=3.36 .13 .43 \mathrm{~Hz}) .3 .61$ $(\mathrm{m} .1 \mathrm{H}) .7 .11(\mathrm{~d} .2 \mathrm{H} . J=8.24 \mathrm{~Hz}), 7.31(\mathrm{~d}, 2 \mathrm{H}, J=7.94 \mathrm{~Hz})$;
${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.73 .21 .67,23.27,26.32$. $29.83,30.21 .32 .42,36.69 .43 .62 .69 .84,130.54 .131 .57$. 132.04. 137.57; Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{OS}: \mathrm{C} .72 .12 ;$ H. $9.84 ; \mathrm{S}$. 12.03. Found: C, 72.13; H. 9.85: S. 12.07; $[\alpha]_{D}^{20}+32.34(c$ $\left.0.97, \mathrm{CHCl}_{3}\right), S$ HPLC analysis using a Whelk-Ol chiral colunn [iso- $\mathrm{PrOH} / \mathrm{hexane}: 1 / 99$: flow rate: $0.3 \mathrm{~mL} / \mathrm{min}$: detector: 254 nm$]$ showed it to be 74% ee $\left[t_{\mathrm{R}}(S) 25.90 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(R) 27.96 \mathrm{~min}\right]$. Optically active β-hydroxy sulfides. such as $(S)-4$ a with 81% ee. $(S)-4 b$ with 74% ee, $(S)-4 d$ with 99% ee. and ($\$$)-4a with 88% ee, were obtained from the known method. ${ }^{13}$
Improvement of optical purities of $4 a-c$ and 4 e . Using our previous procedure, ${ }^{12}$ optical purities of $4 c$ and 4 e were upgraded by recrystallization of their 3,5 -dinitrobenzoates. followed by hydrolysis with $2 \mathrm{~N}-\mathrm{NaOH}$ as follow. To a mixture of 4 c or $4 \mathrm{e}(5 \mathrm{mmol})$ and TMEDA (5 mmol) in dichloromethane (20 mL) was added a solution of 3,5 dinitrobenzoyl chloride (7.5 mmol) in dichloromethane (20 mL) containing 2 drops of THF and the mixture was stirred at room temperature for 12 h . To this was added a saturated NaHCO_{3} solution (20 mL) with vigorous stirring. Organic layer was separated and then aqueous layer was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). Combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. filtered and concentrated to give 4'c or 4'e in nearly quantitative yields. The esters obtained were recry stallized from ethyl acetate-hexane.
Compound 4 'c. 96% yield; light yellow solid; mp 49-50 ${ }^{\circ} \mathrm{C}$: IR (KBr. $\left.\mathrm{cm}^{-1}\right): 2980,1728$. 1545. 1344. 1273. 1167. 1076: ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{\mathfrak{j}}$) $\delta 0.86$ (t. $3 \mathrm{H} . J=6.41$ Hz). $1.25-1.38(\mathrm{~m}, 10 \mathrm{H}) .2 .22(\mathrm{~s}, 3 \mathrm{H}), 3.23$ (d. $2 \mathrm{H} . ~ J=5.8$ $\mathrm{Hz}) .5 .36(\mathrm{~m} .1 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=7.94 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H} . J=$ $7.94 \mathrm{~Hz}) .8 .95(\mathrm{~d}, 2 \mathrm{H}, J=2.14 \mathrm{~Hz}), 9.18(\mathrm{t}, 1 \mathrm{H}, J=2.14$ Hz) ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.69,23.24 .25 .92$. 29.71 , 19.91. $32.35,34.01,39.09 .77 .49,122.80 .130 .06$. 130.48. 131.61, 132.42, $134.55,137.56$. 149.18. 162.71: Calcd. for $\mathrm{C}_{23} \mathrm{H}_{2 s} \mathrm{~N}_{2} \mathrm{O}_{6}$ S: C. 59.98 ; H. 6.13: N. 6.08: S. 6.96 ; Found: C, 59.92: H, 6.09; N. 6.19: S, 7.04; Single recrystallizaton of this ester with 74% ee from ethyl ether provided $\boldsymbol{f}^{\prime} \mathrm{d}$ with 96% ee in 80% yield; $[\alpha]_{D}^{20}+114.26$ (c $0.97, \mathrm{CHCl}_{3}$), $S:$ HPLC analysis using a Whelk-Ol column [iso-PrOH/hexane: $1 / 9$; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; detector: 254 $\mathrm{nmı}]$ showed it to be 96% ee $\left[t_{\mathrm{R}}(R) 10.96 \mathrm{~min}\right.$ and $t_{\mathrm{R}}(S) 11.91$ min].
Compound $\mathbf{4}^{\prime}$ e. 97% yield; light yellow solid: mp 121$123{ }^{\circ} \mathrm{C}$: IR (KBr. cm^{-1}): 2977. 1734, 1542, 1343, 1271. 1167, 1141; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 1.01$ (d. $6 \mathrm{H}, J=$ 6.71 Hz). $2.15-2.24$ (m. 3 H). 3.24 (d. $2 \mathrm{H} . J=5.8 \mathrm{~Hz}), 5.22$ $(\mathrm{q}, 1 \mathrm{H} . J=6.0 \mathrm{~Hz}), 6.96(\mathrm{~d}, 2 \mathrm{H}, J=7.94 \mathrm{~Hz}), 7.26(\mathrm{~d} .2 \mathrm{H} . J$ $=7.94 \mathrm{~Hz}) .8 .95(\mathrm{~d} .2 \mathrm{H}, J=2.14 \mathrm{~Hz}), 9.19(\mathrm{t}, 1 \mathrm{H}, J=2.14$ Hz); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 18.40, 19.28. 31.92. 37.08 , 81.66. 122.78. 130.01, $130.48,131.65$. 132.42. 134.53. 137.56. $149.18,162.74$: Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}$. 56.42: H, 4.98: N. 6.93; S. 7.93: Found: C. 56.43: H. 5.02 : N. 6.94; S. 7.96; Single recrystallizaton of this ester with 88% ee from ethyl ether provided 4 a with 97% ee in 87% yield: $[\alpha]_{\mathrm{D}}^{20}+153.8\left(c \quad 1.04 . \mathrm{CHCl}_{j}\right)$. S : HPLC analysis using a Whelk-Ol colunn [iso-PrOH/hexane: $1 / 99$; flow
rate: $0.8 \mathrm{~mL} / \mathrm{min}$: detector: 254 mm] showed it to be 96% ee $\left[t_{\mathrm{R}}(R) 15.12 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(S) 16.05 \mathrm{~min}\right]$. Using the same methodology, optical purities of 4'a and +'b were upgraded from 81% ee and 74% ee to 96% ee and 98% ee, respectively. ${ }^{12}$

Hydrolysis of 4^{\prime} and sulfoxidation of 4. Preparation of 5.

Hydrolysis of $\mathbf{4}^{\prime}$: The ester $\mathbf{4}^{\prime}(5 \mathrm{mmol})$ recy stallized was dissolved in methanol (50 mL), treated with 2 N NaOH (50 mL) and stirred for 20 min at room temperature. After evaporation of methanol under reduced pressure. residue was extracted with ethyl ether $(3 \times 10 \mathrm{~mL})$. The combined extract was dried over anlydrous MgSO_{4}. filtered and concentrated to give 4 in nearly quantitative yields. β Hydroxy sulfides (4) obtained could be used for sulfoxidation (vide infra) without further purification.

Sulfoxidation: To a solution of $4(4 \mathrm{mmol})$ in diclloromethane $(20 \mathrm{~mL})$ was added dropwise a solution of m chloroperbenzoic acid (4.4 mmol) in dichloromethane (30 mL) for 10 min at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 30 min at room temperature, organic layer was separated, washed with $2 N \mathrm{NaOH}(2 \times 10 \mathrm{~mL})$ and brine $(2 \times 10 \mathrm{~mL})$, dried over anhydrous MgSO_{4}. filtered and concentrated to give β-hydroxy sulfoxide (5), which could be used for alkylation without further purification. The compounds 5a and 5 b are prepared by the known procedure. ${ }^{13}$
(2S)-1-[(RS)-p-Toluenesulfinyl]-2-nonanol 5c. $R_{f} 0.32$ (EtOAc/hexane $1 / 1$); oil: 92% yield; IR (neat, cm^{-1}): 3426 , 2931. 1038; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 0.81-0.87(\mathrm{~m}$, 3 H). $1.23-1.68$ (m. 12 H), 2.43 (s. 3 H). 2.65 (dd, $0.45 \mathrm{H} . ~ J=$ 1.8 and 13.4 Hz), 2.79 (dd. $0.55 \mathrm{H}, J=2.4$ and 13.1 Hz), 2.93 (dd, $0.55 \mathrm{H} . J=9.2$ and 13.1 Hz), 3.02 (dd, $0.45 \mathrm{H} . J=9.6$ and 13.6 Hz$) .3 .68(\mathrm{~d}, 0.55 \mathrm{H} . J=2.75 \mathrm{~Hz}) .3 .77(\mathrm{~s} .0 .45 \mathrm{H})$, $4.15(\mathrm{~m}, 0.45 \mathrm{H}) .4 .30(\mathrm{~m} .0 .55 \mathrm{H}), 7.35(\mathrm{~d} .2 \mathrm{H} . J=7.94 \mathrm{~Hz})$, $7.50-7.58$ (m. 2 H): ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 14.64$. $22.15,23.20,25.34,25.43 .32 .21,32.30 .37 .65 .37 .92$, $61.63,63.05,67.54 .69 .63 .124 .69 .130 .89,142.27,142.74$; Calcd. for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$: C. 68.04: H. 9.28: S, 11.35: Found: C. 68.10: H. 9.22: S. 11.41.
(2S)-3-Cyclohexyl-1-[(RS)-p-toluenesulfinyl]-2-ethanol 5d. $R_{f} 0.31$ (EtOAc/hexane 1/L); mp $77-81^{\circ} \mathrm{C}$: 95% y ield: IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3422. 2956. 1038 : ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.93-1.81(\mathrm{~m} .11 \mathrm{H}), 2.43$ (s. 3H), 2.69 (dd. $0.49 \mathrm{H} . J=$ $13.43,1.53 \mathrm{~Hz}), 2.80(\mathrm{dd}, 0.51 \mathrm{H}, J=13.13,2.14 \mathrm{~Hz}) .2 .99$ $(\mathrm{m} .1 \mathrm{H}), 3.68(\mathrm{~d} .0 .49 \mathrm{H}, J=3.66 \mathrm{~Hz}), 3.78(\mathrm{~d} .0 .51 \mathrm{H}, J=$ $2.14 \mathrm{~Hz}) .3 .94(\mathrm{~m}, 0.49 \mathrm{H}) .4 .07(\mathrm{~m}, 0.51 \mathrm{H}) .7 .34(\mathrm{~d}, 2 \mathrm{H} . J=$ 7.94 Hz). 7.54 (t. $2 \mathrm{H} . J=7.94 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 22.05,22.00,26.58,26.65 .26 .73$. 26.96. 27.01. $28.46,28.54,29.15$. 29.29. 44.25, 44.52. 60.31. 61.13, $71.20,73.52,125.21,131.52$. 143.21, 143.92; Calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C} .67 .63: \mathrm{H}, 8.32 \mathrm{~S} .12 .04$; Found: C, 67.47 : H, 8.31; S, 12.12 .
(2S)-3-Methyl-1-[(RS)-p-toluenesulfinyl]-2-butanol 5e. $R_{f} 0.19$ (EtOAc/hexane 1/l): oil: 93\% yield; IR (neat, cm^{-1}): 3433. 2928, 1033: ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88$ (d, $3 \mathrm{H} . J=4.4 \mathrm{~Hz}), 0.92(\mathrm{~d}, 1.62 \mathrm{H}, J=1.6 \mathrm{~Hz}) .0 .94(\mathrm{~d}, 1.38 \mathrm{H}$. $J=1.6 \mathrm{~Hz}) .1 .79(\mathrm{~m}, \mathrm{IH}), 2.66(\mathrm{dd} .0 .46 \mathrm{H} . J=9.0,1.2 \mathrm{~Hz})$,
$2.77(\mathrm{dd}, 0.54 \mathrm{H}, J=8.8 .1 .4 \mathrm{~Hz}) .2 .96(\mathrm{ml}, 1 \mathrm{H}) .3 .83(\mathrm{~d}$. $0.46 \mathrm{H}, J=2.2 \mathrm{~Hz}) .3 .93(\mathrm{~m}, \mathrm{IH}), 4.08(\mathrm{~s}, 0.54 \mathrm{H}) .7 .34(\mathrm{~d}$. $2 \mathrm{H}, J=5.2 \mathrm{~Hz}), 7.49-7.56(\mathrm{~m} .2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$. $\left.\mathrm{CDCl}_{3}\right) \delta 17.81,18.33,18.58,21.93,34.04 .34 .25 .59 .56$. $71.22,73.74,124.19 .130 .28 .130 .40 .140 .65 .142 .31$; Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 63.68$: H. 8.02: S. 14.17: Found: C. 63.57 : H. 8.08: S. 14.22.
$\boldsymbol{\alpha}$-Alkylation of 5. General Procedure. ${ }^{16}$ Under a nitrogen atmosphere, $n-\mathrm{BuLi}$ ($5.6 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) was added dropwise to 5 (2 mmol) in anhydrous THF (10 mL) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at the same temperature. To this, alkyl iodides (2.2 mmol) was added dropwise and the resulting mixture was stirred for 30 min at $78^{\circ} \mathrm{C}$, allowed to warm to $20^{\circ} \mathrm{C}$ over 2 h . and then quenched by addition of saturated ammonium chloride (10 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The combined extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. filtered and concentrated to give 6. The crude alkylated products obtained were further purified by a flash column chromatography on silica gel ($230-400 \mathrm{mesh}$).
(4RS,5S)-2-[(RS)-p-Toluenesulfinyl]-5-decanol 6h. R_{f} 0.41 ($\mathrm{EtOAc} /$ hexane $1 / 1$): oil; 75% yield; IR (neat, cm^{-1}): $3401,3002,1037$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.71-1.64$ (m. 18H), $2.43(\mathrm{~m}, 1 \mathrm{H}) .2 .77(\mathrm{~m}, \mathrm{lH}) .4 .15(\mathrm{~m}, \mathrm{IH}) .4 .48(\mathrm{~s}$. $1 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H} . J=7.94 \mathrm{~Hz}), 7.60(\mathrm{~d}, 2 \mathrm{H} . J=7.94 \mathrm{~Hz}):{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 14.69. 14.73. 20.73. 22.10, 23.29 . $23.81,25.53 .26 .41,26.56,28.99$. 32.41, 35.14, 62.52. 70.10, 72.88. 73.04. 126.15. 130.68, 140.93. 142.78. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.87$: H. 9.52: S. 10.82: Found: C. 68.92 : H. 9.47: S. 10.83.
(2RS,3S)-2-[(RS)-p-Toluenesulfinyl]-3-decanol 6i. $\quad R_{f}$ 0.32 (EtOAc/hexane $1 / 1$): oil; 80% yield; IR (neat, cm^{-1}): $3443,2952,1044,{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86-1.40$ $(\mathrm{m} .18 \mathrm{H}) .2 .41(\mathrm{~s} .1 .5 \mathrm{H}) .2 .42(\mathrm{~s} .1 .5 \mathrm{H}) .3 .12-3.21(\mathrm{~m}, \mathrm{IH})$. $3.36-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s} .1 \mathrm{H}), 7.33(\mathrm{~d}, 2 \mathrm{H}, J=7.94 \mathrm{~Hz})$. 7.60 (d, $2 \mathrm{H} . J=8.24 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $14.54,21.89 .23 .05,25.25,29.66 .29 .81,30.09,30.13$. $32.19,61.54,64.21,79.58,80$ II. 124.46, 125.86, 140.85. 142.65 ; Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$: C. 68.87; H. 9.52: S, 10.82 : Found: C. $68.84 ; \mathrm{H}, 9.51 ; \mathrm{S}, 10.78$.
($+R S, 3 S$)-2-Methyl-4-[(RS)-p-toluenesulfinyl]-3-hexanol 6j. $R_{f} 0.32$ (EtOAc/hexane 1/1): mp $74-78^{\circ} \mathrm{C} ; 73 \%$ yield; IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): 3358,3044.1031 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 0.87-1.05(\mathrm{~m}, 9 \mathrm{H}), 1.24-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.43$ $(\mathrm{s} .3 \mathrm{H}), 2.85(\mathrm{~m}, \mathrm{lH}) .4 .04(\mathrm{~m}, \mathrm{lH}) .4 .45$ (d. $\mathrm{IH} . J=3.05$ $\mathrm{Hz}) .7 .34$ (d, $2 \mathrm{H} . J=7.94 \mathrm{~Hz}$). 7.62 (d. $2 \mathrm{H}, J=8.24 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 11.04. 15.4. 20.57. 21.96, 30.46 , $69.20,75.70,125.64 .130 .24,140.83 .142 .52$: Caled for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 66.10 ; \mathrm{H} .8 .72 ; \mathrm{S}, 12.61$: Found: C. $66.20 ; \mathrm{H}$. 9.77: S, 12.57.
($+R S, 3 S$)-2-Methyl-4-[$(R S)$-p-toluenesulfinyl]-3-heptanol 6k. $R_{f} 0.33$ (EtOAc/hexane 1/I); oil: 65% yield: IR (neat. cm^{-1}): 3374. 2958. 1022: ${ }^{\mathrm{l}} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 0.84 (d. $2.16 \mathrm{H}, J=6.88 \mathrm{~Hz}$) 0.88 (d. $3.84 \mathrm{H} . J=6.6 \mathrm{~Hz}$). $1.02(\mathrm{~d}, 3 \mathrm{H} . J=6.88 \mathrm{~Hz}) .1 .24-1.60(\mathrm{~m}, 5 \mathrm{H}) .1 .91(\mathrm{~m}, 1 \mathrm{H})$. $2.43(\mathrm{~s}, 3 \mathrm{H}) .2 .85-2.89(\mathrm{~m} .0 .48 \mathrm{H}), 3.97-4.02(\mathrm{~m} .1 \mathrm{H}) .4 .46$
(d. $0.52 \mathrm{H}, J=3.03 \mathrm{~Hz}$), $7.25-7.60(\mathrm{~m} .4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.68,15.58 .20 .02,20.57,21.92 .28 .90$, $30.57,68.04 .76 .32 .125 .28,125.65,129.82 .130 .19,140.34$, 142.29. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 67.12$: H. 9.01: S. 11.95; Found: C. 67.29; H. 9.12: S. 12.02.
(2RS,1S)-1-Cyclohexyl-2-[(RS)-p-toluenesulfinyl]-1-propanol 6l. $R_{f} 0.38$ (EtOAc/hexane 1/1); mp 85% yield: IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3310.2925 .1022:{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.88 \mathrm{~Hz}) .1 .02-1.80(\mathrm{~m} .11 \mathrm{H}) .2 .42(\mathrm{~s}$, $3 \mathrm{H}) .2 .87-3.02(\mathrm{~m}, \mathrm{lH}) .3 .58-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~d}, 0.5 \mathrm{H}) . J$ $=9.08 \mathrm{~Hz}), 4.44(\mathrm{~d} .0 .5 \mathrm{H} . J=2.20 \mathrm{~Hz}) .7 .33(\mathrm{~d} .2 \mathrm{H}, J=7.94$ Hz). 7.60 (d. $2 \mathrm{H}, J=8.24 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 14.82$. 19.80, 21.95. 24.88, 25.97. 26.54, 26.68. 27.01, $30.45,40.69 .62 .91 .124 .92,124.99,126.11$. 129.93, 130.06, 130.16, 138.85. 142.61: Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 68.53: \mathrm{H}$, 8.63; S, 11.43; Found: C. 68.57: H, 8.62; S, 11.40.
(2RS,1S)-1-Cyclohexyl-2-[(RS)-p-toluenesulfinyl $]-1-p e n-$ tanol 6m. $R_{f} 0.47$ (EtOAc/hexane 1/I); oil; 74\% yield; IR (neat. cm^{-1}): $3376.2967,1033 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 0.81-1.73(\mathrm{~m}, 18 \mathrm{H}) .2 .43(\mathrm{~s} .3 \mathrm{H}), 2.92(\mathrm{~m} . \mathrm{lH}) .3 .93(\mathrm{~m}$, $1 \mathrm{H}) .4 .31(\mathrm{~d}, 1 \mathrm{H} . J=3.7 \mathrm{~Hz}) .7 .33(\mathrm{~d}, 2 \mathrm{H} . J=7.94 \mathrm{~Hz}), 7.60$ (d. $2 \mathrm{H} . J=8.24 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 14.85$, 20.52, 26.96, 26.75. 26.97. 26.75, 26.97. 27.17. 29.53. $30.93,41.14,67.61,126.08$. 130.67. 141.05, 142.66; Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$: C. 70.08 : $\mathrm{H}, 9.15$; S. 10.39; Found: C. 70.12 ; H, 9.12; S, 10.41

Preparation of 2 by desufurization of 6 . General procedure. According to the literature procedure, ${ }^{14}$ a solution of each of 7 c and $8-10(2 \mathrm{mmol})$ in anhydrous methanol (10 mL) was added to a suspension of Raney- Ni (ca 0.3 g) in anlydrous methanol. After the mixture was stirred for 6 h at room temperature. The Ni was removed by filtration on a celite short column. The filtrate was concentrated to give the product pheromones 1-4. which were further purified by a flash chromatography on silica gel (230-400 mesh).
(R)-4-Methyl-2-pentanol (2a). $R_{f} 0.42$ (EtOAc/hexane 1/4); oil; 90% yield; IR (neat. cm^{-1}): 3432, 2936; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 0.89$ (d. $3 \mathrm{H} . J=1.93 \mathrm{~Hz}$). 0.91 (d, 3 H , $J=1.93 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H} . J=6.05 \mathrm{~Hz}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.41-$ $1.46(\mathrm{~m} . \mathrm{lH}), 1.69-1.76(\mathrm{~m} .1 \mathrm{H}), 2.88(\mathrm{brs}, \mathrm{IH}) .3 .87(\mathrm{~m}$, IH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.63 .23 .30 .24 .04$, 24.97, 48.77. 65.93: GC analysis (column temperature: 40 ${ }^{\circ} \mathrm{C}$, isothermal; carrier gas: He: head pressure: 13 psi. flow rate: $1 \mathrm{~mL} / \mathrm{min}$: detector: FID) using a G-TA column (Astec) showed it to be 98% ee $\left[t_{\mathrm{R}}(R) 7.12 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(S) 7.53 \mathrm{~min}\right]$.
(R)-2-Heptanol (2b). $R_{f} 0.31$ (EtOAc/hexane 1/4): oil; 89 $\%$ yield: IR (neat. cm^{-1}): 3344,2956 ; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{2}\right) \delta 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.60 \mathrm{~Hz}) .1 .19(\mathrm{~d}, 3 \mathrm{H} . J=6.05$ Hz). 1.28-1.53 (m. 9H). $3.78(\mathrm{~m} .1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.51,23.07,25.89,32.23,39.66,68.51:[\alpha]_{D}^{20}$ $-9.49\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right) S ;\left\{\right.$ lit. ${ }^{17}[\alpha]_{\mathrm{D}}^{22}+10.21\left(\mathrm{CHCl}_{3}\right), R$, $>99 \%$ ee). GC analysis (column temperature: $40^{\circ} \mathrm{C}$. isothermal; carrier gas: He; head pressure: 13 psi, flow rate: $1 \mathrm{~mL} / \mathrm{min}$; detector: FID) using a G-TA column (Astec) showed it to be 96% ee $\left[t_{\mathrm{R}}(R) 7.24 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(\mathrm{S}) 7.69 \mathrm{~min}\right]$.
(R)-2-Nonanol (2c). $R_{f} 0.47$ (EtOAc/hexane 1/4): oil; 93\%
yield: IR (neat, cm^{-1}): 3394, 2961; ${ }^{1} \mathrm{H}$ NMR (200 MHz . CDCl_{3}) 0.88 (t. $3 \mathrm{H} . J=5.80 \mathrm{~Hz}$) $1.07-1.46(\mathrm{~m}, 16 \mathrm{H}), 3.79$ (m. 1H): ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 14.73 .23 .31,24.12$. $26.44,29.94 .30 .28 .32 .48 .40 .05,68.84:[\alpha]_{D}^{2(1)}-6.95$ (c 1.1. $\left.\mathrm{CHCl}_{3}\right) S$; $\left\{\right.$ lit. ${ }^{17}[\alpha]_{D}^{22}+7.96\left(\mathrm{CHCl}_{3}\right), R .>98 \%$ ee $\} . \mathrm{GC}$ analysis of its acetate (column temperature: $130^{\circ} \mathrm{C}$. isothermal: carrier gas: He; detector: FID) using a β-Dex colunnn (Supelco) showed it to be 96% ee $\left[t_{\mathrm{R}}(S) 21.07 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(R) 22.20 \mathrm{~min}\right]$.
(R)-1-Cyclohexylethanol (2d). $R_{f} 0.29$ (EtOAc/hexane 1/4): oil: 95% y ield: IR (neat, cm^{-1}): 3402. 2925: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 0.86-1.88(\mathrm{~m} .15 \mathrm{H}) .3 .55(\mathrm{~m} .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz} . \mathrm{CDCl}_{\mathrm{j}}$) $\delta 21.00 .26 .78 .26 .87 .27 .16,29.01$, $29.34,45.77 .72 .88 ;[\alpha]_{D}^{2(1)}+11.59\left(c 2.23 . \mathrm{CCl}_{4}\right)$ as its acetate, S \{lit. ${ }^{9}[\alpha]_{D}^{20}+10.6\left(c 2.23, \mathrm{CCl}_{4}\right) R .97 .9 \%$ ee $\}$. GC analysis (column temperature: $75^{\circ} \mathrm{C}$. isothermal: carrier gas: He: detector: FID) using a α-Dex column (Supelco) showed it to be 99% ee $\left[t_{\mathrm{R}}(R) 43.99 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(S) 45.54 \mathrm{~min}\right]$.
(R)-5-Decanol ($\mathbf{2 h}$). $R_{f} 0.42$ (EtOAc/hexane 1/4): oil: 91 \% yield: IR (neat. cm^{-1}): 3352. 2930: ${ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 0.89-1.76(\mathrm{~m} .21 \mathrm{H}), 3.58(\mathrm{~m} .1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(50$ $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 14.71 .23 .30,23.42,25.98 .28 .50,32.58$. $27.83,38.10 .72 .67:[\alpha]_{D}^{30}-3.17\left(c 0.4, \mathrm{CCl}_{4}\right)$, probably S by analogy based on the sign of optical rotation values of its analogues; HPLC analysis of its benzoate using a ChiralpakOT column (Daicel) (eluent: MeOH ; flow rate: $0.3 \mathrm{~mL} / \mathrm{min}$: detector: 254 nm) showed it to be 97% ee $\left[t_{\mathrm{R}}(R) 22.65 \mathrm{~min}\right.$ and $\left.t_{R}(S) 27.71 \mathrm{~mm}\right]$.
(R)-3-Decanol (2i). $R_{f} 0.43$ (EtOAc/hexane 1/4); oil: 90\% yield: IR (neat, cm^{-1}): $3352,2958,{ }^{1} \mathrm{H}$ NMR (200 MHz . $\left.\mathrm{CDCl}_{3}\right) \delta 0.85-1.05(\mathrm{~m} .6 \mathrm{H}), 1.28-1.59(\mathrm{~m}, 15 \mathrm{H}), 3.52(\mathrm{~m}$. 1 H): ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{\mathfrak{j}}$) $\delta 10.51,14.73,23.31$. $25.33,29.96 .30 .34 .30 .80,32.50,37.62 .74 .01 ;[\alpha]_{D}^{]_{D}}-8.29$ (c $0.59 . \mathrm{CHCl}_{3}$), probably S by analogy based on the sign of optical rotation values of its analogues: GC analysis of its acetate (column temperature: $130^{\circ} \mathrm{C}$, isothermal; carrier gas: He: detector: FID) using a β-Dex colunn (Supelco) showed it to be 96% ee $\left[t_{\mathrm{R}}(S) 27.34 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(R) 28.39 \mathrm{~min}\right]$.
(R)-2-Methyl-3-hexanol (2j). $R_{f} 0.53$ (EtOAc/hexane 1/4): oil: 92% y ield: IR (neat, cm^{-1}): 3355.2933 ; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90$ (d. $3 \mathrm{H} . J=2.40 \mathrm{~Hz}$), 0.93 (d. 3 H . $J=2.40 \mathrm{~Hz}$). 1.30-1.70 (m. 9H). $3.37(\mathrm{~m} .1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 14.80 .17 .71,19.48,19.84 .34 .13,36.96$. 36.98: $\left.[\alpha]_{D}^{20}+28.2(c 0.95 . \mathrm{CHCl})_{3}\right) . S\left\{\right.$ lit. ${ }^{18}[\alpha]_{D}^{20}-16.8(c$ $0.34, \mathrm{CHCl}_{3}$) $S, 54 \%$ ee $;$; GC analysis (column temperature: $95^{\circ} \mathrm{C}$, isothennal: carrier gas: He: detector: FID) using a β Dex colunnn (Supelco) showed it to be 97% ee $\left[t_{\mathrm{R}}(S) 14.40\right.$ min and $\left.t_{\mathrm{R}}(R) 14.96 \mathrm{~min}\right]$.
(R)-2-Methyl-3-heptanol (2k). $R_{f} 0.56$ (EtOAc/hexane 1/4): oil: 90% yield: IR (neat, cm^{-1}): 3362. 2958: ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90$ (d. $\left.3 \mathrm{H} . J=2.44 \mathrm{~Hz}\right), 0.93$ (d. 3 H . $J=2.75 \mathrm{~Hz}) .1 .31-1.74(\mathrm{~m}, \mathrm{I} \mathrm{H}) .3 .36(\mathrm{~m}, \mathrm{IH}):{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.01,17.98 .19 .80,23.73 .29 .18,34.38$. 34.79: $[\alpha]_{D}^{2.1}+25.52\left(c 1.15\right.$. EtOH). $R\left\{\right.$ lit. ${ }^{15}[\alpha]_{D}-8.86(c$ $1.06, \mathrm{EtOH}) \mathrm{S}, 36 \%$ ee $\}$; GC analy sis (column temperature: $95^{\circ} \mathrm{C}$, isothennal: carrier gas: He: detector: FID) using a β Dex colunnn (Supelco) showed it to be 97% ee $\left[t_{R}(S) 29.55\right.$
min and $t_{\mathrm{R}}(R) 30.37 \mathrm{~min}$]
(R)-1-Cyclohexyl-1-propanol (21). $R_{f} 0.53$ (EtOAc/ hexane 1/4); oil; 92% yield; IR (neat. cm^{-1}): $3402.2925 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 0.93-1.82(\mathrm{~m} .17 \mathrm{H}$). 3.27 (m, IH); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.57 .26 .74 .27 .02$, $28.06,28.26 .29 .63,29.92 .43 .41 .77 .90:[\alpha]_{D}^{2(1)}+7.2(c 0.68$, $\left.\mathrm{CHCl}_{3}\right) . S\left\{\right.$ lit. $^{2(1)}[\alpha]_{D}^{20}+7.1\left(c 0.7, \mathrm{CHCl}_{3}\right) R .99 \%$ ee $\} . \mathrm{GC}$ analy sis (column temperature: $85^{\circ} \mathrm{C}$, isothermal, carrier gas: He; detector: FID) using a a-Dex column (Supelco) showed it to be 99% ee $\left[t_{\mathrm{k}}(R) 44.61 \mathrm{~min}\right.$ and $\left.t_{\mathrm{R}}(S) 46.41 \mathrm{~min}\right]$.
(R)-1-Cyclohexyl-1-butanol (2m). $R_{f} 0.47$ (EtOAc/hexane 1/4); oil; 95% yield; IR (neat. cm^{-1}): 3341, 2926; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88-1.78(\mathrm{~m}, 21 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.72 .23 .46 .26 .88,27.05,27.23$. $28.35,28.79 .29 .94 .34 .47,44.23,76.87 ;[\alpha]_{\mathrm{D}}^{2(1)}+14.29(c$ 1.93. CHCl_{3}). $S\left\{\left\{_{\text {lit. }}{ }^{2]}[\alpha]_{\mathrm{D}}^{2(1)}-10.9\left(c 1.8 . \mathrm{CHCl}_{3}\right) R, 72 \%\right.\right.$ ee\}. GC analysis (column temperature: $125^{\circ} \mathrm{C}$, isothermal; carrier gas: He ; detector: FID) using a β-Dex column (Supelco) showed it to be 99% ee $\left[t_{\mathrm{R}}(\$) 91.62 \mathrm{~min}\right.$ and $t_{\mathrm{R}}(R)$ 93.42 min]. Using the same methodology, 2e with 98% ee, $\mathbf{2 f}$ with 99% ee and $\mathbf{2 g}$ with 96% ee were prepared. ${ }^{12}$

Acknowledgements. This work was supported by the Research Grant from Hallym University. Korea and Korea Research Foundation (KRF-2001-041-D00153).

References and Notes

1. (a) Mori. K. Chirality 1998, 10.578-586. (b) Moni, K. Eur. J. Org. Chem. 1998. 1479. (c) Mori. K. Tetrahedron 1989. 45. 3233. (c) Cammaerts. M.-C.: Mori. K. Physiol. Enthol. 1985. 11. 33. (d) Brand. J. M. J. Chem. Ecol. 1985. 11. 177. (e) Cammaerts. M.-C.: Mori. K. Phwsiol. Entmol. 1987, 12. 381.
2. (a) Ramirez-Lucas, P; Malosse. C.; Duerot, P.-H.: Lettere, M.: Zagatti, P. Bioorg. Med. Chem. 1996. +. 323. (b) Perez, A. L.; Campos. Y:: Chinchilla. C. M.: Oehlschlager. A. C.: Gries. G.: Gries. R.: Giblit1-Davis. R. M.: Castrillo. G.: Peña. J. E.: Duncatı. R. E.: Gonzalez. L. M.: Pierce. H. D.. Tr:: McDonald. R.: Andrade. R. J. Chem. Ecol. 1997. 23, 869.
3. Mori. K. Bioxci. Biotech. Biochen. 1992. 56. 1673 and references cited therein.
4. Bartelt. R. T.: Schaner. A. M.: Jackson1. L. L. J. Chem. Ecol. 1989. 15. 399.
5. Schaner. A. M.: Tanico-Hogan. L. D.: Tackson. L. L. J. Chem. Ecol. 1989, 15, 2577.
6. For recent reviews, see: (a) Daverio, P: Zanda, M. Terrahedion: Aswmetry 2001, 12. 2225. (b) Itsuno. S. In Conprehentive Aswnmetric Catalysis: Tacobsen. E. N.: Ptaltz. A.: Yamamoto. H.. Eds.: Spritger: Berlin1. 1999. Vol. 1. Chap. 6.4. pp 289-315. (c) Corey. E. T.: Helal. C. T. Angew. Chem. Int. Ed. 1998.37. 1986. (d) Itsuno. S. Org. React. 1998, 52, 395-576. (e) Midland, M. M.; Morrell. L. A. In Houben-Went. Methods of Organic Chentisirv: Helmehen. G.: Hoffmann, R. W.: Mulzer. J.: Schaumann. E.. Eds.: Georg Thieme: Stutgart. 1996: Vol. E21. pp 4049-4066: 40824098. (f) Cho. B. T. Aldrichimica Acta 2002. 35. 16.
7. Midland. M. M.: Kazubski. A.: Woodling. R. E. J. Org. Chem. 1991. 56. 1068. NB-Enantride $=$ lithium B-iso-2-(2-benzyloxy $)$ -ethylapopinocampheyl-9-borabicyo[3.3.1]nonyl hydride.
8. Ramachandran. P. V.; Brown, H. C.: Swaminathan, S. Tetohedor: Aswnonety 1990. 1. 433. Eapine-Hydride $=$ lithium B-iso-2-ethylapopinocampheyl-9-borabicyclo[3.3.1]nonyl hydride.
9. Imai. I.: Tamura. T.: Yamamuro. A.: Sato. T.: Wollmann. T. A.:

Kennedy. R. M.: Masamune. S. J. Am. Chem. Soc. 1986. 108. $7402-7404$
10. (a) Ogura. K. In Comprehensive Organic Sunthesis: Selectivit: Strategr and Efficiency in Modern Organic Chemistry: Trost. B. M.: Fleming. I., Eds.', Pergamon Press: Seoul, 1991: Vol. 1. pp 505-539. (b) Metzner. P.: Thuillier. A. Sulfur Reagent in Organic Syhthesis: Academic Press: New York. 1994. (c) Raghavan, S.: Joseph. S. C. Tetrahedrom: Aswmetry 2003. 14. 101. (d) Walker. A. J. Tetrahedron: Aspmmetry 1992, 3. 961. (e) Barros. D: Carreno. M. C.: Garcia Ruano, J. L.: Maestro, M. C. Tetrahedron Lett. 1992. 33, 2733. (f) Solladié-Cavallo, A.' Suffert. J.; Adib, A.' Solladie. G. Tetratredron Lett. 1990. 31. 6649. (g) Solladié. G.: Fréchou. C.: Hutt. J.: Demailly. G. Buhl. Soc. Chim. Fr. 1987. 827. (h) Solladie. G.: Fréchou. C.: Demailly. G. Tetrahe dron Lett. 1986. 27. 2867. (i) Kosugi. H.: Kitaoka. M: Takahashi, A.; Uda, H. J. Chem. Soc. Chem. Commun. 1986, 1267. (j) Solladié. G.; Demailly. G.: Greck, C. Tetrahedron Lett. 1985, 26, 435. (k) Solladié. G.: Demailly. G.: Greck. C. J. Org. Chem. 1985. 50. 1552. (1) Solladié G.: Greck. C.: Demailly, G. Tetrahedron Lett. 1982, 23. 5047.
11. Cho. B. T.: Choi. O. K.: Kim. D. J. Bull. Korean Chem. Soc. 2003.
24. 1023.
12. Cho. B. T.: Kim. D. T. Tetrahedron 2003. 59. 2457.
13. Cho. B. T.: Choi. O. K.i Kim. D. J. Temahedron: Astnmetry 2002. 13. 697.
14. Solladie. G.: Maestro, M. C.: Rubio. A.: Pedregal. C.: Carreño. M. C.: Ruano. T. L. G. J. Org. Chem. 1991. 56. 2317.
15. (a) Crumbie. R. L.: Deol. B. S.: Nemorin. T. E.: Ridley. D. D. Aust. J. Chem. 1978. 31. 1965.
16. (a) Tanikaga. R.; Hosova, K.; Kaji, A. J. Chen. Soc. Perkin Trans. I 1988, 2397. (b) Takano. S.: Yanase, M; Takahakshi. M; Ogasawara, K. Chem. Lell. 1987. 2017.
17. Keinan. E.: Hateli. E. K.: Steh. K. K.: Lamed. R. J. Am. Chem. Soc. 1986. 108. 162.
18. Dhokte. U. P.: Pathare. P. M.: Mahindroo. V. K.: Brown. H. C.. . Org Chen $1998,63,8276$.
19. Huang. W. S.' Hu. Q. S.: Pu. L. J. Org. Chen. 1999, 64, 7940.
20. Nakano. H.: Kumagai, N.: Matsuzaki, H.; Kabuto, C.; Hongo, H. Tetrahedron: Asymmetry 1997.8. 1391.
21. Lindell. S. D.: Elliott. T. D.: Tohnson. W. S. Tetrahedron Lett. 1984. 25. 3947.

