DOI QR코드

DOI QR Code

Fourier Transform Raman Studies of Methyl Red Adsorbed on γ-Alumina and Silica-Alumina

  • Published : 2004.12.20

Abstract

Fourier transform Raman spectra of methyl red adsorbed on untreated and pretreated ${\gamma}$-alumina and silicaalumina calcined at 900 $^{\circ}C$ under 1 atm steam flowing were recorded. Spectral analysis shows that the active species adsorbed on ${\gamma}$-alumina was to be deprotonated methyl red, and on silica-alumina to be di-protonated. This indicates that ${\gamma}$-alumina adapted in this work holds Bronsted basicity, and silica-alumina Bronsted acidity. Raman intensities of methyl red on pretreated ${\gamma}$-alumina are about three times stronger than on untreated ${\gamma}$-alumina, while spectral features are unchanged. For silica-alumina, spectral features show modified vibrational characteristics upon surface hydroxylations generated from pretreatment. Consequently, the acidity loss for silica-alumina and the basicity gain for ${\gamma}$-alumina were observed by increasing the surface hydroxyl groups on the catalysts through pretreatment of the steam calcination.

Keywords

References

  1. Biswas, N.; Umapathy, S. J. Phys. Chem. A 1997, 101, 5555. https://doi.org/10.1021/jp970312x
  2. Inoue, K.; Takeuchi, H.; Konaka, S. J. Phys. Chem. A 2001,105, 6711. https://doi.org/10.1021/jp0045944
  3. Tsuji, T.; Takashima, H.; Takeuchi, H.; Egawa, T.;Konaka, S. J. Phys. Chem. A 2001, 105, 9347. https://doi.org/10.1021/jp004418v
  4. Park, H. S.; Oh,K. S.; Kim, K. S.; Chang, T.; Spiegel, D. R. J. Phys. Chem. B1999, 103, 2355. https://doi.org/10.1021/jp9838442
  5. Bell, S.; Bisset, A.; Dines, T. J. J. Raman Spectrosc. 1998, 29,447. https://doi.org/10.1002/(SICI)1097-4555(199806)29:6<447::AID-JRS265>3.0.CO;2-R
  6. Bisset, A.; Dines, T. J. J. Raman Spectrosc. 1995, 26, 791. https://doi.org/10.1002/jrs.1250260829
  7. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids andBases; Elsevier: Amsterdam, 1989.
  8. Sanz, J. F.; Rabaa, H.; Poveda, F. M.; Marquez, A. M.; Calzado,C. J. Inter. J. Quantum Chem. 1998, 70, 359. https://doi.org/10.1002/(SICI)1097-461X(1998)70:2<359::AID-QUA12>3.0.CO;2-7
  9. Gao, X.; Wachs, I. E. J. Catal. 2000, 192, 18. https://doi.org/10.1006/jcat.2000.2822
  10. Kidwai, M.; Rastogi, S.; Saxena, S. Bull. Korean Chem. Soc.2003, 24, 1575. https://doi.org/10.5012/bkcs.2003.24.11.1575
  11. Yoo, J. W.; Lee, S. M.; Kim, H. T.; El-Sayed, M. A. Bull.Korean Chem. Soc. 2004, 25, 843. https://doi.org/10.5012/bkcs.2004.25.6.843
  12. Choi, H. -W.; Woo, H.-J.;Kim, J.-K.; Kim, G. -D.; Hong, W.; Ji, Y.-Y. Bull. Korean Chem.Soc. 2004, 25, 535. https://doi.org/10.1007/s11814-008-0090-6
  13. Yamamoto, H.; Maeda, Y.; Kitano, H. J. Phys. Chem. B 1997,101, 6855. https://doi.org/10.1021/jp963916u
  14. Wang, K.; Li, Y.-S. Vib. Spectrosc. 1997, 14, 183. https://doi.org/10.1016/S0924-2031(97)00005-2
  15. Michl, M.; Vlckova, B.; Mojzes, P. J. Mol. Struct. 1999, 482, 217. https://doi.org/10.1016/S0022-2860(98)00787-X
  16. Michl, M.; Vlckova, B.; Mojzes, P. Vib. Spectrosc. 1999, 19, 239. https://doi.org/10.1016/S0924-2031(98)00084-8
  17. Bachackashvilli, A.; Katz, B.; Priel, Z.; Efrima, S. J. Phys. Chem.1984, 88, 6185. https://doi.org/10.1021/j150669a026
  18. Bisset, A.; Dines, T. J. J. Chem. Soc., Faraday Trans. 1997, 93(8),1629. https://doi.org/10.1039/a606469h

Cited by

  1. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule vol.131, pp.2, 2009, https://doi.org/10.1021/ja8080154
  2. Electrical properties of safranine T/p-Si organic/inorganic semiconductor devices vol.50, pp.1, 2010, https://doi.org/10.1051/epjap/2010022
  3. Surface plasmon resonance and surface-enhanced Raman scattering activity of SiO2–Au core-cap nanostructure arrays vol.117, pp.4, 2014, https://doi.org/10.1007/s00339-014-8634-6
  4. FT-Raman and surface-enhanced Raman scattering (SERS) spectroscopic study of a methyl red@palygorskite hybrid nanocomposite: isomerization and protonation of the guest dye vol.48, pp.4, 2016, https://doi.org/10.1002/jrs.5069
  5. Gamma irradiation-induced changes at the electrical characteristics of organic-based schottky structures vol.41, pp.13, 2008, https://doi.org/10.1088/0022-3727/41/13/135103
  6. Electrical characteristics and inhomogeneous barrier analysis of aniline green/p-Si heterojunctions vol.19, pp.10, 2008, https://doi.org/10.1007/s10854-007-9431-1
  7. Electrical characterization of organic-on-inorganic semiconductor Schottky structures vol.20, pp.4, 2008, https://doi.org/10.1088/0953-8984/20/04/045215
  8. Fabrication and electrical properties of organic-on-inorganic Schottky devices vol.20, pp.21, 2008, https://doi.org/10.1088/0953-8984/20/21/215210
  9. Amorphous manganese polyphosphates: preparation, characterization and incorporation of azo dyes vol.50, pp.2, 2009, https://doi.org/10.1007/s10971-009-1965-7
  10. Structural and Conformational Studies of ortho-, meta-, and para-Methyl Red upon Proton Gain and Loss vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1170
  11. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  12. Electrical characterization of the Al/new fuchsin/n-Si organic-modified device vol.42, pp.5, 2010, https://doi.org/10.1016/j.physe.2009.11.079
  13. Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues: Theory and Experiment vol.133, pp.11, 2004, https://doi.org/10.1021/ja110964d
  14. Investigating the Halochromic Properties of Azo Dyes in an Aqueous Environment by Using a Combined Experimental and Theoretical Approach vol.18, pp.26, 2004, https://doi.org/10.1002/chem.201103633
  15. pH-dependent fluorescence property of methyl red isomers in silver colloids vol.407, pp.2, 2004, https://doi.org/10.1016/j.physb.2011.10.036
  16. Highly Sensitive and Full Range Detectable Humidity Sensor using PEDOT:PSS, Methyl Red and Graphene Oxide Materials vol.9, pp.1, 2004, https://doi.org/10.1038/s41598-019-51712-w
  17. Microfluidic chip for multiple detection of miRNA biomarkers in breast cancer based on three-segment hybridization vol.10, pp.4, 2004, https://doi.org/10.1063/1.5137784
  18. Ultrasensitive Label-free MiRNA Sensing Based on a Flexible Graphene Field-Effect Transistor without Functionalization vol.2, pp.4, 2004, https://doi.org/10.1021/acsaelm.0c00095