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Ligand-based quantitative structure-activity relationship (QSAR) studies were performed on indolinones 
derivatives as a potential inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR) by 
comparative molecular Held analysis (CoMFA) and comparative molecular similarity indices analysis 
(CoMSIA) implemented in the SYBYL packages. The initial X-ray structure of docked ligand (Su5402) to 
FGFR was used to minimize the 27 training set molecules using TRIPOS force Held. Seven models were 
generated using CoMFA and CoMSIA with grid spacing 2 A. After the PLS analysis the best predicted 
CoMSIA model with hydrophobicity, hydrogen bond donor and acceptor property showed that a leave-one out 
(LOO) cross validated value (r2cv) and non-cross validated conventional value (r2ncv) are 0.543 and 0.938, 
respectively.

Key Words : Ligand-based QSAR, CoMFA, CoMSIA, Protein tyrosine kinase inhibitor, Fibroblast growth 
factor receptor

Introduction

Computer-aided drug design1 is a new field to develop 
new biologically active compounds based on the knowledge 
of previously synthesized ones. The most widely used 
approach, quantitative structure-activity relationship (QSAR)2 

is to correlate observed biological activities with structural 
changes of ligands. 3D QSAR techniques, such as the com­
parative molecular field analysis (CoMFA)3 and the com­
parative molecular similarity indices analysis (CoMSIA),4 are 
based on the experimental structure-activity relationship on 
specific bio-macromolecule and ligand pair. This method is 
based only on the ligand structure and thus the spatial 
arrangement (or alignment) is crucial in determining the 
accuracy of these approaches.

Selective inhibition of the protein tyrosine kinases (PTKs) 
inhibitor of Fibroblast Growth Factor Receptor (FGFR) is 
considered as a major emerging strategy in cancer therapy 
because PTKs are critical components of signal pathways 
that control cell proliferation and differentiation and 
enhanced PTK activity due to activating mutations or over­
expression has been implicated in many human cancers.5

Indolinone derivative inhibitors (IDIs) of protein tyrosine 
kinase of FGFR with high potency and selectivity have 
already been developed by Cho Tang etc. in Sugen Inc. and 
have been under clinical evaluation.6 QSAR study on PTKs 
of FGFR was studied using the 2D descriptors by Corwin 
Hansch group.7

In this work, however, we plan to perform QSAR study on 
IDIs using the ligand-based CoMFA and CoMSIA to 
correlate their biological activities with three-dimensional 
structures and to provide useful information necessary for 
designing improved lead compounds.

Methods

Data Set for Analysis. To perform the ligand-based 
QSAR study, 27 IDIs, which have been synthesized and 
tested for biological inhibitory activity toward tyrosine 
phosphorylation were taken from the literature.6,8 Experi­
mentally, the indoline-2-one core is known to occupied the 
adenine binding site of ATP8 and thus the information 
deduced from the substitution on the core is useful for 
further modification of indoline-2-one as inhibitors against 
FGFR. The molecular structures are shown in Figure 1. 
From the reference data, IC50 values were defined as the 
concentration of a compound required to achieve 50% 
inhibition of maximal tyrosine phosphorylation as measured 
by bromodeoxyuridine (BrdU) incorporation when compar­
ed to vehicle-treated controls (DMSO).

Computational Methods and Ligand-based Molecular 
Alignment. The crystal structure of Su5402 (3-[(3-(2- 
carboxethyl)-4-methylpyrrol-2-yl) methylene]-2-indolinone) 
was used to generate initial structures of 27 IDIs.6,8 All 
ligands were sketched using the sketch module in the 
SYBYL package and conformational searches were per­
formed by grid search which calculates energies by system­
atically changing the dihedral angles of each ligand using 
standard TRIPOS force field.9 Among them, the lowest 
energy structures were selected as the conformers for the 
3D-QSAR studies. Finally all ligands were fully optimized 
using the standard TRIPOS force field with Gasteiger- 
Huckel charges until the energy gradient converged to below 
0.05 kcal/mol. Total 27 ligand structures were selected as 
training set and indolinone fragment of the molecules were 
used for the alignment. Result of the superimposed image of 
27 ligand structures is shown in Figure 2. All calculations 
were done on a SGI octane 2 workstation using SYBYL 6.9 
software packages.10
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Figure 1. Structures of indolinone-based protein tyrosine kinase inhibitors used as a training set.
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Figure 2. Superimposed complexes model using indolinone based 
molecular alignment. Atoms with capped sticks type selected as the 
fitting fragment.

PLS An이ysis Using CoMFA and CoMSIA. CoMFA is 
one of the well known 3D-QSAR descriptors which has 
been used to produce the 3D models to indicate the regions 
that afHct biological activity with a change in the chemical 
substitution.11-13 CoMFA quantises the statistical relationship 
between the 3D properties of a set of small molecules and a 
global property, such as their potency in a particular 
biological assay. CoMFA was performed with the QSAR 
option of SYBYL. For all steps of conventional CoMFA, the 
default SYBYL settings were used except otherwise noted. 
For each CoMFA analysis, the minimum s was set to 2.0 to 
expedite the calculation. The steric and electrostatic field 
energies were calculated using sp3 carbon probe atoms with 
+1 charge. CoMFA grid spacing used in this work was 2.0 A 
in all X, Y and Z directions. CoMFA QSAR equations were 
calculated with the partial least square (PLS) algorithm. The 
optimal number of components (ONC) in the 0nal PLS 
model was determined by the r2cv and standard error of 
estimate values, obtained from the leave-one-out cross­
validation technique. The van der Waals potential and 
columbic terms, which represent the steric and electrostatic 
terms, respectively, were calculated using the standard 
TRIPOS ibrce field. A distance dependent dielectric constant 
of 1.00 was used. Values of the steric and electrostatic 
energy were truncated at 30 kcal/mol.

CoMSIA calculates similarity indices at the intersections 
of a surrounding lattice. The five CoMSIA fields of steric, 
electrostatic, hydrophobic, hydrogen bond donor and acceptor 
were calculated at the grid lattice point using a probe atom of 
2.0 A radius as well as the charge, hydrophobic and 
hydrogen bond properties of H, and an attenuation factor of 
0.3. The CoMSIA approach can avoid some inherent 
deficiencies arising from the functional form of Lennard- 
Jones and Coulomb potentials used in the conventional 
CoMFA. In CoMSIA, a distance-dependent Gaussian-type 
functional form has been introduced, which can avoid 
singularities at the atomic positions and the dramatic 
changes of potential energy for these grids in the proximity 

of the surface. Compared with usual CoMFA, CoMSIA has 
better ability to visualize and interpret correlations obtained 
in terms of field contributions. The unique difference 
between conventional CoMFA and CoMSIA is the field type 
and the field calculation function.

The partial least-squares (PLS) analysis algorithm was 
used in conjugation with the cross-validation (leave-one-out) 
option to obtain an optimum number of components, which 
were used to generate the final CoMFA and CoMSIA 
models without cross validation. The result from a cross 
validation analysis was expressed as r%v defined in eq. (1):

r2cv = 1 - PRESS / £(Ybs - Y mean)2 (1)

The PRESS statistic is calculated by the following equation, 
eq. (2).

PRESS = £ (Kbs - Yredf ⑵

where, Ybs, Ynean and 匕心 are observed, the mean of the 
predicted and predicted values of the activity, respectively.

Results and Discussion

In this work, CoMFA and CoMSIA approaches were used 
to elucidate the QSAR as descriptors for protein tyrosine 
kinase inhibitors of FGFR biological activity.

CoMFA offers two different descriptors and CoMSIA 
offers five different descriptors; there^re, diverse combina­
tions of descriptors are possible for CoMSIA.14 Seven 
different models were generated using 2 A grid spacing with 
diverse descriptors - Model 1: CoMFA with steric and 
electrostatic descriptors, Model 2: CoMSIA with steric, 
electrostatic, hydrogen bond donor, acceptor and hydro­
phobic descriptors, Model 3: CoMSIA with steric and 
electrostatic descriptors, Model 4: CoMSIA with hydrogen 
bond donor and acceptor, Model 5: CoMSIA with steric, 
electrostatic and hydrophobic descriptors, Model 6: CoMSIA 
with steric, electrostatic, hydrogen bond donor and acceptor 
descriptors, and Model 7: CoMSIA with hydrogen bond 
donor, acceptor and hydrophobic descriptors.

The results obtained from the PLS analysis are summariz­
ed in Table 1. Inspection of Table 1 shows that leave-one out 
cross-validated value (r2cv) is 0.494 and non cross-validated 
conventional value is 0.840 for CoMFA Model 1 and the 
results of PLS analysis for CoMSIA Model 2 show that r2cv 

is 0.527 and r2ncv is 0.900. This means that the CoMSIA 
model is better than CoMFA model to elucidate the QSAR 
as descriptors for PTK inhibitors of FGFR biological 
activity. In order to obtain better predictive values using 
CoMSIA, five more models were considered.

In these approaches, Model 7 with hydrogen bond donor, 
acceptor and hydrophobic descriptors shows best correlation 
- leave-one out cross-validated value (r2cv) and non cross­
validated conventional value (r2ncv) are 0.543 and 0.938, 
respectively. Smaller standard error of estimate values (SEE) 
and higher F values also suggests that the selected CoMSIA 
Model 7 is better than the others. From this analysis, we can 
conclude that Model 7 is the best model.
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Table 1. The results of PLS analysis in the Training Set using CoMFA and CoMSIA

CoMFA CoMSIA

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Selected Fields" SE SEDAH SE DA SEH SEDA DAH

rCv 0.494 0.527 0.397 0.567 0.481 0.504 0.543

PLS
Analysis

Components 3 3 5 4 5 3 4
rhcv 0.840 0.900 0.859 0.684 0.911 0.891 0.938
SEE 0.323 0.255 0.318 0.464 0.253 0.267 0.206

F Value 40.25 69.05 25.48 11.91 47.73 62.60 82.81

Steric 0.470 0.060 0.296 0.131 0.072
Electrostatic 0.530 0.307 0.704 0.481 0.390

Contribution H Bond Donor 0.449 0.911 0.488 0.068
H Bond Acceptor 0.043 0.089 0.050 0.498

Hydrophobic 0.144 0.388 0.434

“S=steric, E=electrostatic, D=hydrogen bond donor A=hydrogen bond acceptor, H=hydrophobic

Table 2. Actual and predicted activities (pICso) of the Training Set 
Molecules using Model 7

pS pIC5o

NO. Actual Pred. Residual NO. Actual Pred. Residual

1 5.15 5.13 0.02 15 7.52 7.23 0.29
2 4.98 4.80 0.18 16 5.92 6.25 -0.33
3 4.88 4.67 0.21 17 5.43 5.59 -0.16
4 6.66 6.45 0.21 18 6.34 6.59 -0.25
5 4.70 4.93 -0.23 19 5.41 5.57 -0.16
6 4.76 4.90 -0.14 20 5.98 5.72 0.26
7 4.70 4.89 -0.19 21 5.81 5.68 0.13
8 7.52 7.48 0.04 22 5.52 5.51 0.01
9 6.57 6.79 -0.22 23 5.69 5.39 0.30
10 6.57 6.66 -0.09 24 6.55 6.49 0.06
11 5.97 5.83 0.14 25 5.27 5.49 -0.22
12 5.90 5.99 -0.09 26 5.64 5.65 -0.01
13 5.87 5.96 -0.09 27 5.85 5.61 0.24

14 6.06 5.95 0.11 Ave. 0.16

Activities of 27 compounds in the training set are
predicted from the PLS analysis using the best model and 
the results along with their actual PIC50 values and residuals 
are summarized in Table 2. A plot of actual PIC50 vs. 
predicted PIC50 is shown in Figure 3. Close examination of 
Table 2 shows that average residual of the actual and 
predicted values is 0.16. There^re we can confirm that 
Model 7 is the best, which is also apparent from the linear 
plot depicted in Figure 3.

Graphical representations of the selected CoMSIA maps 
for the best model are displayed in Figures 4-6. The contour 
maps were superimposed on Su 5402 (entry 8) shown in 
atom type color. The 6eld type “stdev*coef ” was used to 
obtain contour maps in CoMSIA.

Hydrogen bond donor contour map of CoMSIA is 
depicted in Figure 4. Cyan colored region where hydrogen 
bond donor is associated with enhanced affinity is not found 
in this map. But orange colored regions where hydrogen

Figure 3. Comparison of actual vs predicted pICso (based on the 
data of Table 2).

bond donor is associated with diminished affinity are found 
in the near 5-position of indolinone ring, which is ibund for 
the compounds with 5-SO2NH2 group (entry 4, 18, and 24). 
Hydrogen bond acceptor contour map of CoMSIA is 
described in Figure 5. Blue colored regions where hydrogen 
bond acceptor is associated with enhanced affinity is found 
largely in near carboxyethyl group of methyl pyrrol ring. It 
indicates that carboxyl group found for entry 8 or 15 is 
essential for the interaction with amino acid residues of the 
active site. But red colored region where hydrogen bond 
acceptor is associated with diminished affinity is not found 
in this map. In Figure 6, hydrophobic contour map of 
CoMSIA is shown. Yellow color contour region where 
hydrophobicity is associated with enhanced affinity is near 
the 6 position of indolinone ring (compare entry 19 vs. entry 
20 or entry 25 vs. entry 26), aliphatic hydrophobic side chain 
of carboxyethyl and near the methyl pyrrol ring, which is 
found for entry 8 and 15 with carboxyethyl group at 4 
position and CH3 group at 3 position. On the other hand,
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Figure 4. Superposition of the CoMSIA Hydrogen bond donor 
stdev*coeff contour plots

Table 3. Actual and predicted activities (pICso) of test set 
molecules using CoMSIA Model 7

No. Structure
CoMSIA Model 7

Actual--------------------------
Predicted PIC Residual

pIC5o

Figure 5. Superposition of the CoMSIA Hydrogen bond acceptor 
stdev*coeff contour plots

Figure 6. Superposition of the CoMSIA Hydrophobic stdev*coeff 
contour plots.
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-0.08

-0.36

0.75

-0.09

0.T0

0.28

Predicted pIC50 values agree well with the experimental ones 
with average deviation of 0.28, which suggests that our best 
model is good in predicting the pIC50 values.

Conclusion

white color contour region where hydrophobicity is 
associated with diminished affinity is not found.

To further validate our results, five compounds which 
were not included in the training set molecules with PIC50 

range between 4.70 and 7.10 were assigned as a test set and 
their biological activities are predicted from the PLS 
equation derived from Model 7. Predicted and actual 
activities of test set molecules are summarized in Table 3.

In order to perform ligand-based QSAR studies, 27 
training set molecules as an inhibitor of the protein tyrosine 
kinase of FGFR were selected as a training set and indoli- 
none fragment of the molecules were used for the alignment. 
With combination of diverse descriptors, seven models were 
generated from CoMFA and CoMSIA. The best model, 
Model 7, was CoMSIA with hydrogen bond donor, acceptor 
and hydrophobic descriptors, and this model showed good 
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statistical results. From above PLS correlations, activities of 
five test set molecules were predicted satisfactorily. Based 
on above 3D-QSAR results, we are currently performing 
virtual screen work to find novel inhibitors.
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