DOI QR코드

DOI QR Code

Geometrical Characteristics and Atomic Charge Variations of Pd(II) Complexes [Pd(L)Cl2] with an Axial (Pd·O) Interaction

  • Park, Jong-Keun (Central Laboratory, Pusan National University) ;
  • Cho, Yong-Guk (Department of Chemistry Education, Gyeongsang National University) ;
  • Lee, Shim-Sung (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Bong-Gon (Department of Chemistry Education, Gyeongsang National University)
  • Published : 2004.01.20

Abstract

Geometrical structures of [Pd(L)$Cl_2$] with oxathia macrocycles have been calculated using ab initio secondorder Moller-Plesset (MP2) and Density Functional Theory (DFT) methods with triple zeta plus polarization (TZP) basis set level. In optimized Pd(L)$Cl_2$ complexes, Pd(II) locates at the center surrounded by a square planar array of two sulfurs on an oxathia macrocycle and two chlorides. The endo-Pd(II) complexes with an axial (Pd${\cdots}$O) interaction are more stable than the exo-Pd(II) complexes without the interaction. In the endo-Pd(II) complexes, the atomic charge of the oxygen atom moves to Pd(II) via the axial ($Pd{\cdots}$O) interaction and then, the charge transfer from Pd(II) to the S-atoms occurs stepwise via ${\pi}$-acceptors of the empty d-orbitals.

Keywords

References

  1. Blake, A. J.; Holder, A. J.; Hyde, T. I.; Roberts, Y. V.; Lavery, A.J.; Schroder, M. J. Organomet. Chem. 1987, 323, 261. https://doi.org/10.1016/0022-328X(87)80374-1
  2. Blake, A. J.; Holder, A. J.; Hyde, T. I.; Schroder, M. J. Chem. Soc.Chem. Commun. 1989, 1433.
  3. Blake, A. J.; Reid, G.; Schroder, M. J. Chem. Soc. Dalton Trans.1990, 3363.
  4. Blake, A. J.; Crofts, R. D.; de Groot, B.; Schroder, M. J. Chem.Soc. Dalton Trans. 1993, 485.
  5. Blake, A. J.; Gould, R. O.; Radek, C.; Schroder, M. J. Chem. Soc.Dalton Trans. 1995, 4045.
  6. Danks, J. P.; Champness, N. R.; Schroder, M. CoorditionChemistry Reviews 1998, 174, 417. https://doi.org/10.1016/S0010-8545(98)00082-4
  7. Blake, A. J.; Gilby, L. M.; Gould, R. O.; Lippolis, V.; Parsons, S.;Schroder, M. Acta Cryst. 1998, C54, 295.
  8. Hunter, G.; McAuley, A.; Whitcombe, T. W. Inorg. Chem. 1988,27, 2634. https://doi.org/10.1021/ic00288a015
  9. Chak, B.; McAuley, A.; Whitcombe, T. W. Can. J. Chem. 1994,72, 1525. https://doi.org/10.1139/v94-189
  10. Chak, B.; McAuley, A.; Whitcombe, T. W. Inorg. Chim. Acta1996, 246, 349. https://doi.org/10.1016/0020-1693(96)05121-3
  11. Lucas, C. R.; Liu, S. Inorg. Chim. Acta 1995, 230, 133. https://doi.org/10.1016/0020-1693(94)04310-R
  12. Lucas, C. R.; Liang, W.; Miller, D. O.; Bridson, J. N. Inorg. Chem.1997, 36, 4508. https://doi.org/10.1021/ic961536h
  13. Lai, Y.-H.; Ma, L.; Mok, K. F. New J. Chem. 1997, 21, 985.
  14. Luis, S. V.; Frias, J. C.; Burguete, M. I.; Bolte, M. Acta Cryst.1998, C54, 1093.
  15. Yoon, I.; Yoo, B. S.; Lee, S. S.; Kim, B. G. Acta Cryst. 2000, C56,758.
  16. Park, K.-M.; Yoon, I.; Yoo, B. S.; Choi, J. B.; Lee, S. S.; Kim, B.G. Acta Cryst. 2000, C56, 1191.
  17. Grant, G. J.; Galas, D. F.; Jones, M. W.; Loveday, K. D.;Pennington, W. T.; Schimek, G. L.; Eagle, C. T.; VanDerveer, D.G. Inorg. Chem. 1998, 37, 5299. https://doi.org/10.1021/ic9715714
  18. Huheey, J. E.; Keiter, E. A.; Keiter, E. L. Inorganic Chemistry:Principles of Structure and Reactivity, 4th ed.; Harper Collins:New York, 1993; p 292.
  19. Mais, R. H. B.; Owston, P. G.; Wood, A. M. Acta Cryst. 1972,B28, 393.
  20. Park, J. K.; Kim, J. S. Bull. Korean Chem. Soc. 2000, 21, 1031.
  21. Kim, B.-G.; Min, K.-S.; Lee, B.-W.; Doh, M.-K. Bull. KoreanChem. Soc. 1998, 19, 482.
  22. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.;Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.;Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.;Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox,D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A.Gaussian 98; Gaussina Inc.: Pittsburgh, PA, 1998.
  23. Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280 https://doi.org/10.1063/1.462165
  24. Andzelm, J.; Wimmer, E.; Salahub, D. R. The Challenge of d- and f- Electrons: Theory and Computation; Salahub, D. R.; Zerner, M. C., Eds.; ACS Symposium Series, No. 394; American Chemical Society: Washington D. C., 1989; p 228 and references therein
  25. Andzelm, J. Density Functional Methods in Chemistry; Labanowski, J.; Andzelm, J., Eds.; Springer-Verlag: New York, 1991; p 155 and references therein
  26. Becke, A. D. The Challenge of d- and f-Electrons: Theory andComputation; Salahub, D. R.; Zerner, M. C. ACS SymposiumSeries, No. 394; American Chemical Society: Washington D.C.,1989; p 166
  27. Becke, A. D. Phys. Rev. 1988, A38, 3098.
  28. Perdew, J. P. Phys. Rev. 1986, B33, 8822.
  29. Hay, P. J. J. Am. Chem. Soc. 1981, 103, 1390. https://doi.org/10.1021/ja00396a017

Cited by

  1. Orbital Interaction and Electron Density Transfer in PdII([9]aneB2A)L2 Complexes: Theoretical Approaches vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181012687
  2. Template Synthesis of Copper(II) Complexes of N3O-Donor Macrotricycles Containing N-CH2-N and N-CH2-O Linkages vol.25, pp.12, 2004, https://doi.org/10.5012/bkcs.2004.25.12.1973
  3. Synthesis and Crystal Structure of Hg2+ Complex with an S2O2 Donor Dipodal Ligand. A Search for New Voltammetric Sensor for Hg2+ vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1293
  4. Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versu vol.27, pp.9, 2004, https://doi.org/10.5012/bkcs.2006.27.9.1405
  5. Geometrical Characteristics and Reactivities of Tetracoordinated Pd Complexes: Mono- and Bidentate Ligands and Charged and Uncharged Ligands vol.29, pp.3, 2004, https://doi.org/10.5012/bkcs.2008.29.3.627
  6. High‐pressure studies of three polymorphs of a palladium(II) oxathioether macrocyclic complex vol.72, pp.3, 2004, https://doi.org/10.1107/s2052520616007435