Facile Reduction of Carboxylic Acids, Esters, Acid Chlorides, Amides and Nitriles to Alcohols or Amines Using $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$

Su-Dong Cho, ${ }^{\dagger}$ Yong-Dae Park, Jeum-Jong Kim, J. R. Falck, ${ }^{\ddagger}$ and Yong-Jin Yoon*
Department of Chemistry \& Research Institute of Life Science, Gveongsang Vational Vnversin, Chinju 660-701. Korea
${ }^{\dagger}$ Deparment of Chemistry, Research Institute of Natural Sciences. Changwon National University, Changu'on 6+1-773, Korea
${ }^{\ddagger}$ Department of Biochemistru, Unversity of Texas Southuestern Medical Center, Dallas. TI 75390. U.S.A

Received Vovember 14, 2003
Key Words : $\mathrm{NaBH}_{4}-\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Reduction of carboxylic acid. ester. acid chloride. amide. and nitrile

The reduction of aldehydes, ketones and carboxylic acid derivatives to the corresponding alcohols or amines is an important transformation in synthetic organic chemistry. Lithium aluminum hydride and boranes are amongst the most conmonly used reagents for this purposes. ${ }^{1 \cdot 15}$ These highly reactive hydrides. however, have severe limitations such as the need for anlydrous solvents. hazardous handling. incompatibility with other functionality. and incomplete reaction. On the other hand, sodium borohydride is more convenient. less expensive. and safer to use, but does not reduce carboxylic acid derivatives. such as nitriles. esters. lactones and amides. ${ }^{13}$ To broaden the utility of NaBH_{4}. its reactivity has been enhanced with various additives ${ }^{13.14}$ including $\mathrm{CeCl}_{3},{ }^{15} \mathrm{CaCl}_{2}{ }^{16} \mathrm{ZnCl}_{2} .{ }^{17} \mathrm{CuSO}_{4},{ }^{18} \mathrm{I}_{2},{ }^{19} \mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}^{20}$ sulfuric acid. ${ }^{21}$ catechol, ${ }^{32}$ trifluoroacetic acid ${ }^{32}$ sulfur ${ }^{23}$ $\mathrm{ZrCl}_{4}{ }^{24} \mathrm{Et}_{2} \mathrm{SeBr}_{2}{ }^{23}$ methanesulfonic acid ${ }^{36} \mathrm{TiCl}_{4}{ }^{36} \mathrm{Me}_{3} \mathrm{SiCl}_{3}{ }^{37}$ $\mathrm{SnCl}_{2}{ }^{28} \mathrm{MnCl}_{2}{ }^{29} \mathrm{SnCpCl}_{2}(\mathrm{THF})_{3}{ }^{30} \mathrm{ErCpCl}_{2}(\mathrm{THF})_{3}{ }^{30}$ Amberlyst-15(H^{+}). ${ }^{31} \mathrm{Al}_{2} \mathrm{O}_{3},{ }^{33}$ (S)-lactic acid derivatives, ${ }^{33}$ (L)-tartaric acid. ${ }^{34}$ cobalt complex. ${ }^{35}(-)-N$-dodecyl- N-methyl ephedrenium salt. ${ }^{36}$ lanthanoid complexes. ${ }^{37} \mathrm{Cu}^{1+}$-clay $/(S)$ proline, ${ }^{38}$ a chiral surfactant. ${ }^{39}$ and $3.4,5$-trifluorophenylboronic acid. ${ }^{4(1}$ Nevertheless, research in this field is still very active even now ${ }^{14}$ We report herein that carboxylic acids, esters. acid chlorides. amides and nitriles can be reduced directly to the corresponding alcohols or amines using $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in THF.
In continuation of our studies on the reactivity of sodium borohydride toward carboxylic acid derivatives, we found that reduction of benzoic acid by $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{-} \mathrm{O}$ in THF afforded benzyl alcohol in excellent yield. According to the literature, ${ }^{3}$ treatment of sodium borohydride with boron trifluoride etherate afford borane. Although borane is a good reducing agent. it has some drawbacks, such as low boiling points, low spontaneous ignition temperature and toxicity. Thus, $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{3} \mathrm{O}$ system is a useful borane source. Pettit, et al. ${ }^{41}$ also reported the reduction of tert-butyl 5α -pregnane- 20 S -carboxylate to 20 S -tert-butoxymethylene- 5α pregnane using this system. Since the reduction of carboxylic acid derivatives, however. by this binary system $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ has not been reported. a systematic examination of its scope as a reducing agent using a variety of carboxylic acid derivatives was deemed warranted. The results are summarized in Table 1.

In a typical procedure, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in THF is added slowly to a THF solution of substrate and NaBH_{4}. and then heated to reflux with stirring until the substrate disappears. After cooling to $0^{\circ} \mathrm{C}$. the reaction is carefully quenched with water and the product is isolated by organic solvent extraction. The carboxylic acids (entries 1-9). esters (entries 11 and 12) and an acid chloride (entry 13) all furnished the corresponding alcohols in excellent yields. In contrast. reduction of muchochloric acid (entry 10) gave rise to 2.3 -dichloro- 5 H -furan-2-one (87%) accompanied by a minor amount of 2.3-dichlorobuten-1,4-diol (7.4\%). Although generally more difficult to reduce. amides (entries 14 and 15) and a nitrile (entry 16) also efficiently evolved the expected amines. The reduction rates for the latter, however, were slower than the rates for carboxylic acids and carboxylate derivatives.

In conclusion, $\mathrm{NaBH}_{4} / \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ is an inexpensive and highly versatile reducing system for a wide variety of carbonyls. acid chlorides, carboxylic acids. esters, amides and nitriles.

Experimental Section

General Remarks. TLC was performed on SiO_{2} (silica gel 60 F254. Merck). The spots were located by UV light. Column chromatography was carried out on SiO_{2} (silica gel $60,70-230 \mathrm{mesh})$. Melting points were determined with a Thomas-Hoover capillary apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker FT NMR-DRX 500 or Varian Inova 500 spectrometer and with chemical shift values reported in d units (part per million) relative to an intenal standard (teteramethylsilane). IR spectra were obtained on a Hitachi $270-50$ or Mattson Genesis Series FT-IR spectrophotometer. Elemental analyses were performed with a Perkin Elmer 240 C .

General Procedure: Reduction of Carboxylic acids and Carboxylate Derivatives. A solution of $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(0.0065$ mmol) in THF (15 mL) was added slowly to a room temperature solution of $\mathrm{NaBH}_{4}(0.015 \mathrm{mmol})$ and carboxylic acids or carboxylate derivatives (0.01 mmol) in THF (25 mL) under an inert atmosphere. The mixture was heated to reflux until TLC monitoring showed complete consumption of the substrate. The reaction misture was cooled to $0^{\circ} \mathrm{C}$. quenched with water (caution: vigorous gas evolution) keeping the

Table 1． $\mathrm{NaBH}_{4}+\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ reductions of carhoxylic acids．esters．acid chloride．amides and nitrile

I：niry	Subsirate	Product	Time（hr）	Yield（\％）	Intry	Subsirate	Product	Time（hr）	Yield（\％）
1	（1）${ }^{\mathrm{CO}_{2} \mathrm{H}}$	（1）${ }^{\text {OH }}$	1	97	9	$\nabla^{\mathrm{CO}_{2} \mathrm{H}}$	$\mathrm{O}^{\text {OH }}$	1	97
2	${ }_{\mu, c} \rho^{c 0,1}$	$\mathrm{H}, \mathrm{CO}_{1} \mathrm{OH}$	1	95	10	a^{2}	aro	1.5	$87^{\prime \prime}$
3	$C_{o n}^{\cos \mu}$	$\mathrm{COH}_{\mathrm{OH}}^{\mathrm{OH}}$	1	93	11	$\underset{\mathrm{CH}_{3}}{\mathrm{HoEt}}$	${ }_{\text {HO}}^{\text {CH3 }}$	3	94
4	$\mathrm{o}_{2} \mathrm{~N} \mathrm{D}^{\mathrm{con}}$	$\mathrm{O}_{2} \mathrm{~N} \mathrm{IV}^{\circ} \mathrm{OH}$	5	94	12	c1．是员比	clmor	1.5	76
5	${ }_{c 1}\{]^{\mathrm{O}_{2} \mathrm{H}}$	$\mathrm{Cl}^{\mathrm{OH}}$	1	95	13	$00^{\text {cocl }}$	$0^{\text {OH }}$	1	96
6	$\mathbb{N}_{\mathrm{N}}{ }^{\mathrm{co} \mathrm{O}_{2} \mathrm{H}}$	N^{OH}	0.5	94	14	$\mathrm{Cl}^{\mathrm{CONH}_{2}}$	$\mathrm{Cl}^{\mathrm{NH}_{2}}$	8	78
7	$\mathrm{O}_{2} \mathrm{~V}^{(12} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{O}_{\mathrm{a}} \mathrm{NO}_{\mathrm{O}} \mathrm{COH}$	1.5	98	15	$\mathrm{C}_{\mathrm{F}}^{\mathrm{coNH}}$	$\mathcal{S}_{\mathrm{F}}^{\mathrm{NH} / 2}$	8	89
8	$\text { meo })^{\mathrm{CO}_{2} \mathrm{H}}$	$\operatorname{moc}^{D} D^{\mathrm{OH}}$	0.5	96	16	$\mathrm{clil}^{\mathrm{CN}}$	${ }_{0} \bigcirc^{\text {nem }}$	5	84

＂By－product is 2，3－dichlorobut－2－cne－1．4－diol（7．4\％）．
temperature $=10^{\circ} \mathrm{C}$ ．After 10 min ，the THF was removed under reduced pressure， $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（or $\mathrm{Et}_{2} \mathrm{O}$ ）was added，and the stirring was continued for another 1 h ．The organic layer was separated，washed with brine．dried over $\mathrm{MgSO}_{\text {，}}$ ，and the solvent was removed under reduced pressure．Purification of the residue by SiO_{2} chromatography gave pure alcohol in the indicated yield（Table 1）．
Benzyl alcohol（entry 1 and 13）：colorless liquid．IR （ KBr ）： $3360(-\mathrm{OH}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=4.20(\mathrm{~s} .1 \mathrm{H}$ ， $\mathrm{D}_{2} \mathrm{O}$ exchangeable）， 4.43 （ $\mathrm{s}, 2 \mathrm{H}$ ）．7．15－7．25（m．5H）．${ }^{13} \mathrm{C}$ NMR（CDCl $)_{3}: \delta=64.04,126.57,126.91 .127 .96,140.55$. Anal．Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 77.75 ; \mathrm{H}, 7.46$ ．Found： $\mathrm{C}, 77.73$ ； H， 7.41 ．
4－Methylbenzyl alcohol（entry 2）：mp．60－61 ${ }^{\circ} \mathrm{C}$ ．IR （ KBr ）： $3354(-\mathrm{OH}) \mathrm{cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}\right): \delta=2.32(\mathrm{~s}$ ， 3H）， 2.49 （t，IH， $\mathrm{D}_{2} \mathrm{O}$ exchangeable）， 4.13 （ $\mathrm{s}, 2 \mathrm{H}$ ）．7．15－7．25 （m，5H）．${ }^{1 .} \mathrm{C}$ NMR（CDClis）：$\delta-21.10,64.96,127.00$ ， 129．10，137．15，137．88．Anal．Calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 78.65$ ； H．8．25．Found：C．78．67；H，8．22．
2－Hydroxybenzyl alcohol（entry 3）：mp． $81-83^{\circ} \mathrm{C}$ ．IR （KBr）： $3450(-\mathrm{OH}), 3172(-\mathrm{OH}) \mathrm{cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ）：δ － 2.54 （bs， $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable）， 4.83 （s，2H），6．82－6．88 $(\mathrm{m}, 2 \mathrm{H}), 7.01-7.04(\mathrm{~m}, \mathrm{IH}), 7.17-7.25(\mathrm{~m}, \mathrm{IH}), 7.35(\mathrm{bs}, \mathrm{IH}$ ， $\mathrm{D}_{2} \mathrm{O}$ exchangeable）．${ }^{15} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-64.52,116.50$ ， 120．13，124．71．127．90，129．51，155．97．Anal．Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ ：C， $67.73 ; \mathrm{H}, 6.50$ ．Found：C， $67.73 ; \mathrm{H}, 6.48$ ．
4－Nitrobenzyl alcohol（entry 4）：mp．92－93 ${ }^{\circ} \mathrm{C}$ ．IR（ KBr ）： $3512(-\mathrm{OH}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（CDCl$): \delta^{-2} 2.72$（bs，IH， $\mathrm{D}_{2} \mathrm{O}$ exchangeable）， $4.81(\mathrm{~s}, 2 \mathrm{H}), 7.5 \mathrm{I}(\mathrm{d}, 2 \mathrm{H}, J-8.70 \mathrm{~Hz}), 8.16$ $(\mathrm{d}, 2 \mathrm{H}, J-9.30 \mathrm{~Hz}) .{ }^{15} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-63.77,123.57$ ． 126．89，147．07，148．32．Anal．Caled for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{5}: \mathrm{C}, 54.90$ ； H， 4.61 ；N， 9.15 ．Found：C．54．88；H，4．59；N， 9.12 ．
4－Chlorobenzyl alcohol（entry 5）：colorless liquid．IR （KBr）： $3364 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ）：$\delta-2.93$（bs， $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable）， 4.55 （ $\mathrm{s}, 2 \mathrm{H}$ ），7．21－7．31（m， 4 H ）．${ }^{13} \mathrm{C}$ NMR （CDCl）：δ－64．19．128．21，128．56，128．58，139．13．Anal．

Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{ClO}: \mathrm{C}, 58.97$ ：H，4．95．Found：C， 58.95 ：H， 4.94.
（Pyridin－3－yl）methanol（entry 6）：colorless liquid．IR $(\mathrm{KBr}): 3280 \mathrm{~cm}^{-1}$ ．${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=4.79(\mathrm{~s}, 2 \mathrm{H}) .5 .76$ （bs，1H， $\mathrm{D}_{2} \mathrm{O}$ exchangeable），7．31－7．46（m，1H）．7．76－7．91 （ m, IH ），8．37－8．41（m，1H）， $8.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{1 .} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ ： $\delta=60.85,123.06,124.75,137.19$ ．145．41，146．24．Anal． Caled for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}: \mathrm{C}, 66.04 ; \mathrm{H}, 6.47$ ；N，12．84．Found：C， 66.01 ；H，6．45；N， 12.79.
（5－Nitrofuran－2－yl）methanol（entry 7）：colorless liquid． IR（ KBr ）： $3450(-\mathrm{OH}) \mathrm{cm}^{-1}$ ．${ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ）：$\delta=3.24$（s． $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable）， $4.71(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=3.60$ $\mathrm{Hz}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=3.60 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 57．10，110．65，112．65．153．21．157．64．Anal．Caled for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{4}: \mathrm{C}, 41.97 ; \mathrm{H}, 3.52 ; \mathrm{N}, 9.79$ ．Found：C． $41.95 ; \mathrm{H}$ ， 3．51；N， 9.75.

4－Methoxyphenethyl alcohol（entry 8）：mp．27－29 ${ }^{\circ} \mathrm{C} . \mathrm{IR}$ （ KBr ）： $3456(-\mathrm{OH}) \mathrm{cm}^{-1}{ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ）：$\delta-2.71$（bs， IH，D2 O exchangeable）， $2.75(\mathrm{t} .3 \mathrm{H}), 3.74(\mathrm{~s}, 5 \mathrm{H}), 6.82(\mathrm{~d}$ ． $2 \mathrm{H}, J-7.80 \mathrm{~Hz}$ ）． $7.10\left(\mathrm{~d}, 2 \mathrm{H} J-8.10 \mathrm{~Hz}\right.$ ）．${ }^{1.3} \mathrm{C}$ NMR （CDCl）$)^{2} \delta-37.99,55.04,63.46,113.76,129.74,130.43$, 157．96．Anal．Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$ ：C，71．03：H，7．95．Found： C． 71.02 ；H． 7.91.

Cyclohexylmethanol（entry 9）：colorless liquid．IR （ KBr ）： $3320(-\mathrm{OH}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-0.84-0.96$ $(\mathrm{m}, 2 \mathrm{H}), 1.09-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.40-\mathrm{I} .50(\mathrm{~m}, \mathrm{IH}), 1.65-\mathrm{I} .85$ $(\mathrm{m}, 5 \mathrm{H}), 3.24$（bs， $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable），3．36－3．39（ m ， $2 \mathrm{H}) .{ }^{1.3} \mathrm{C}$ NMR（ CDCl_{3} ）：$\delta-25.68,26.44,29.45,40.2 \mathrm{I}$ ， 68．11．Anal．Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}: \mathrm{C}, 73.63 ; \mathrm{H}$, 12．36．Found： C，73．63；H， 12.33.

3，4－Dichloro－5H－furan－2－one（entry 10）：mp．52－53 ${ }^{\circ} \mathrm{C}$ ． IR（ KBr ）： $1786(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ CDCl_{3} ）：$\delta^{-4.91}$（s． IH）．${ }^{\circ} \mathrm{C}$ NMR（ $\left.\mathrm{CDCl}_{3}\right): \delta-70.92,120.82,149.03,165.75$. Anal．Calcd for $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{O}_{2}: \mathrm{C}, 31.41 ; \mathrm{H}, 1.32$ ．Found： C ， 31．42；H，I． 30 ．
（S）－（＋）－1，2－Propanediol（entry 11）：colorless liquid．IR
(KBr): $3352 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.14$ (d, $3 \mathrm{H} . J=$ $5.70 \mathrm{~Hz})$. $3.37-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.62(\mathrm{~m} . \mathrm{IH}) .4 .38-4.40$ (bs, 2H. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). ${ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=18.5 \mathrm{l}$. $67.65,68.07$. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}: \mathrm{C}, 47.35: \mathrm{H} .10 .60$. Found: C, 47.33: H, 10.58.

4-Chlorobutanol (entry 12): colorless liquid. $\mathrm{IR}(\mathrm{KBr})$: $3346 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.80(\mathrm{~m}, 2 \mathrm{H}) .3 .51-3.60$ (m. 2H), 3.76 (bs, $5 \mathrm{H} . \mathrm{D}_{2} \mathrm{O}$ exchangeable). 3.97-4.04 (m. $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=33.63,47.46,57.66 .67 .90$. Anal. Calcd for $\mathrm{C}_{4} \mathrm{H} \mathrm{ClO}: \mathrm{C} .44 .25$; H. 8.36. Found: C. 44.22: H, 8.35.

General Procedure: Reduction of Amides and Nitriles. A solution of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.0065 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added slowly to a room temperature solution of NaBH_{4} (0.015 mmol) and anide or nitrile (0.01 mmol) in THF (25 mL) under an inert atmosphere. The mixture was heated to reflux until TLC monitoring showed complete consumption of the substrate. The reaction misture was cooled to $0^{\circ} \mathrm{C}$, quenched with water (caution: vigorous gas evolution) keeping the temperature $\leq 10^{\circ} \mathrm{C}$. After 10 min . the THF was removed under reduced pressure. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (or $\mathrm{Et}_{2} \mathrm{O}$) was added, and the stirring was continued for another 1 h . The organic layer was separated. washed with brine, dried over MgSO_{4}. and the solvent was removed under reduced pressure. Purification of the residue by SiO_{2} chromatography provided the amine as a borane complex. This was dissolved in water (30 mL) to which a 30% aqueous solution of NaOH (5 mL) was added. After stirring for 10 minutes. $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$. 5 mL) was added and the stirring was continued for another 2 h at room temperature. The reaction mixture was extracted with EtOAc and the combined organic extracts were dried over MgSO_{4} and the solvent was removed under reduced pressure. Purification of the residue by SiO_{2} chromatography gave pure amine in the indicated yield (Table l).
Benzyl amine (entry 14): colorless liquid. IR (KBr): $3372\left(-\mathrm{NH}_{2}\right), 3312\left(-\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=1.31$ (s. $2 \mathrm{H} . \mathrm{D}_{2} \mathrm{O}$ exchangeable), $4.82(\mathrm{~s}, 2 \mathrm{H}) .7 .18-7.33(\mathrm{~m} .5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=46.42$. 126.63. 126.79, 128.31. 143.22. Anal. Caled for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}:$ C. 78.46: H. 8.47: N. 13.07. Found: C. 78.43 : H. 8.45; N. 13.03.
2,6-Difluorobenzylamine (entry 15): colorless liquid. IR (KBr): $3370\left(-\mathrm{NH}_{2}\right), 3308\left(-\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $=1.43$ (s. 2H. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). 4.90 (s. 2H). 6.80-7.21 (m. 3H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=52.74,52.81 .52 .85,111.03$. 111.10. 111.37. 111.42, 116.00. 116.32, 116.50, 129.55. 129.74. 129.88, 159.84, 159.94, 163.12. 163.22. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{O}: \mathrm{C} .58 .74$: H. 4.93: N. 9.79. Found: C. 58.73 : H. 4.98: N. 9.90

4-Chlorobenzylamine (entry 16): colorless liquid. IR $(\mathrm{KBr}): 3366\left(-\mathrm{NH}_{2}\right), 3310\left(-\mathrm{NH}_{2}\right) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}^{2} \mathrm{NR}\left(\mathrm{CDCl}_{3}\right): \delta$ $=1.41$ (s. 2H. $\mathrm{D}_{2} \mathrm{O}$ exchangeable). 4.81 (s. 2H). 7.20-7.29 (m. 4 H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=45.62 .128 .32 .128 .40$. 132.24. 141.47. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClN}$: C. 59.38: H. 5.69 : N. 9.89. Found: C. 59.37 : H. 5.66 : N. 9.86.

Acknowledgments. This work was financially supported by Korea Research Foundation (KRF-2000-015-DP0257).

References

1. Walker J. Chem. Soc. Rev 1976. 5, 23.
2. Brown. H. C.: Heim. P.: Yoont. N. M. J. Am. Chem. Soc. 1970.92. 1637.
3. Yoon. N. M.: Pak. C. S.: Brown. H. C.: Krishnamuthy. S.: Stochy. T. P. J. Org. Chem. 1973. 38, 2786.
4. Cho. B. T:; Yoon, N. M. Swnth. Commmm. 1985, 15.917
5. Das. J.: Chandrasekharan. S. Symth. Commmm. 1990, $20,907$.
6. Brown. H. C.: Weissman. P. M.: Yoon. N. M. J. Am. Chem. Soc. 1966. 88. 1458
7. Brown. H. C.: Weissman. P. M. J. Am. Chem. Soc. 1956. 78.6714.
8. Brown, H. C.: Subba Rao, B. C. J. An. Chem. Soc. 1956, 78. 2582.
9. Brown, H. C.: Subba Rao, B. C. J. Am. Chem. Soc. 1960. $82,681$.
10. Kano. S.: Tanaka. Y.: Sugino. E.: Hibino. S. Sphthesis 1980. 695.
11. Lane. C. F.: Myatt. H. L.: Dannels. J.: Hopps. H. B. J. Org. Chen. 1974. 39.3052.
12. Smith. G. A.: Gawley. R. E. Org. Sym. 1984. 63, 136.
13. Paquette, L. A. Encyclopedia of Reagents for Organic Swnthesis; John Wiley \& Sons: New York, 1995; Vol 7, pp $4522-4528$.
14. Periasamy. M.: Thirumalaikumar. M. J. Organometal. Chem. 2000. 609. 137.
15. Ward. D. E.: Rhee. C. K. Camadiam. Jhem. 1989. 67.1206.
16. Brown, H. C.: Narasimhan. S.: Choi. Y. M. J. Org. Chem. 1982. 47. 4702.
17. Yamakawa, T.: Masaki. M.; Nohira, H. Bull. Chem. Soc. Jpn. 1991. 64. 2730.
18. Yoo. S.: Lee. S. Swlett. 1990. 419.
19. Prasad. A. S. B.: Kanth. J. V. B.: Periasamy. M. Tetrahedron 1992. $+8.4623$.
20. Saito. S.; Ishikawa. T:; Kuroda, A.: Koga. K.; Moriwake, T. Tetrahedron 1992. 48, 4067.
21. Abiko. A.: Masamune. S. Tetrahedron Lett. 1992. 33. 5517.
22. Suseela. Y.: Periasamy. M. Tetrahedron 1992. 48.371.
23. Lalancette. T. M.: Freche. A.: brindle. J. R.: Laliberte. M. Smhesis 1972. 526.
24. Itsuno. S.: Sakurai. Y: Ito, K. Swnthesis 1988.995.
25. Akabori. S.: Takanohashi. Y. J. Chem. Soc. Perfin Trans. 11991. 479.
26. Wann. S. R.: Thorsen. P. T.: Kreewoy. M. M. J. Org. Chem. 1981, $+6.2579$.
27. Giannis. A.: Sandhoff. K. Angew Chem. Int. Ed. Engl. 1989. 28. 218.
28. Ono. A.; Hayakawa. H. Chem. Lett. 1987, 853.
29. Fujii. H.: Oshima. K: Utimoto. K. Tetrahedron Lett. 1991. 32. 6147.
30. Komiya. S.: Tsutsumi. O. BuII. Chem. Soc. Jpm. 1987. 60. 3423.
31. Caycho. J. R.: Tellado, F. G.: de Armas, P:; Tellado. J. J. M. Tetralidron Lett. 1997, 38.277.
32. Santaniello, E.; Poni. F:; Anzocchi, A. Synthesis 1978. 891.
33. Bianchi. G.: Achilli. F:: Gamba. A.: Vercesi. D. J. Chem. Soc. Perkin Trans. 1 1988. 417.
34. Yatagai. M.: Ohnuki. T. J. Chem. Soc. Perkim Trans. 1 1990. 1826.
35. Nagata. T.: Yorozu, K.; Yamada, T:; Mukivama, T. Angew, Chen. Int. Ed. Engl. 1995. 34, 2145.
36. Sarker. A.: Rao, B. R. Tetrahedron Lett. 1991. 32, 1247.
37. Okawa. H.: Katsuki. T.: Nakamura. M.: Kumagai. N.: Shuin. Y.: Shinmyozu. T.: Kida. S. J. Chem. Soc. Chen. Conmum. 1989. 139.
38. Sarkar. A.; Aao, B. R.: Bhattacharya. P. K. Indion J. Chent. 1995. $3 \nexists B .156$.
39. Gribble. G. W.: Jasinski, J. M; Pellicone. J. T.; Panetta, J. A. Synthesis 1978. 766.
40. Tale. R. H.: Patil. K. M.: Dapurkar. S. E. Terrahedron Letf. 2003. +H. 3427.
41. Pettit, G. R.; Piatak, D. M. J. Org. Chen. 1962, 27, 2127.
