Development of Mixed-bed Ion Exchange Resin Capsule for Water Quality Monitoring

수질 중 질소와 인 모니터링을 위한 혼합이온교환수지 캡슐의 개발

  • Park, Chang-Jin (National Institute of Agricultural Science and Technology) ;
  • Kim, Dong-Kuk (Division of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Ryu, Kyung-Ryul (Division of Biological Environment, Kangwon National University) ;
  • Lee, Ju-Young (Division of Biological Environment, Kangwon National University) ;
  • Zhang, Yong-Seon (National Institute of Agricultural Science and Technology) ;
  • Yang, Jae-E (Division of Biological Environment, Kangwon National University)
  • Published : 2004.09.30

Abstract

This study was conducted to develop and assess the applicability of mixed-bed ion exchange resin capsules for water quality monitoring in small agricultural watershed. Recoveries of resin capsules for inorganic N and P ranged from 96 to 102%. The net activation energies and pseudo-thermodynamic parameters, such as ${\Delta}G^{o\ddag},\;{\Delta}H^{o\ddag},\;and\;{\Delta}S^{o\ddag}$ for ion adsorption by resin capsules, exhibited relatively low values, indicating the process might be governed by chemical reactions such as diffusion. However, those values increased with temperature coinciding with the theory. The reaction reached pseudo-equilibrium within 24 hours for $NH_4-N\;and\;NO_3-N$, and only 8 hours for $PO_4-P$, respectively. The selectivity of resin capsules were in the order of $NO_3\;^-\;>\;NH_4\;^+\;>\;PO_4\;^{3-}$, coinciding with that of encapsulated Amberlite IRN-150 resin. At the initial state of equilibrium, the resin adsorption quantity was linearly proportional to the mass of ions in the streams, but the rate of movement leveled off, following Langmuir-type sorption isotherm. The overall results demonstrated that the resin capsule system was suitable for water quality monitoring in small agricultural watershed, judging from the reaction mechanism(s) of the resin capsule and the significance of model in field calibration.

본 연구는 혼합이온교환수지 캡슐이 수질 모니터링 도구로 활용가능한지를 평가하기 위해 수행되었다. 이를 위해 수지의 질소$(NH_4\;^+-N,\;NO_3\;^--N)$와 인산$(PO_4\;^{3-}-P)$에 대한 물리적, 화학적 반응 특성을 구명하고, 현장적용시험을 수행하였다. 실험결과 유속이 증가함에 따라 수지의 이온 흡착량은 감소하였으며, 이온 종류에 따른 흡착량은 $NO_3\;^--N\;>\;NH_4\;^+-N\;>\;PO_4\;^{3-}-P$ 순으로 나타나 수지의 흡착 선택성과 일치하였다. 온도와 시간에 따른 이온의 농도 변화를 일차반응속도모델에 적용하였을 때, 반응비상수$({\kappa})$는 반응온도가 증가함에 따라 증가하였고, 이온의 농도가 증가함에 따라 증가하였다. 온도가 증가함에 따라 ${\Delta}H^{o\ddag}$값과 ${\Delta}G^{o\ddag}$값은 증가하였으나, $E_a$값과 ${\Delta}S^{o\ddag}$값은 감소하여 열역학 이론과 일치하였다. $E_a$$155.38{\sim}682.89\;kJ{\cdot}mol^{-1},\;{\Delta}H^{o\ddag}$$153.03{\sim}680.54\;kJ{\cdot}mol^{-1},\;{\Delta}S^{o\ddag}$$525.02{\sim}610.99\;J{\cdot}mol^{-1},\;K^{-1}\;{\Delta}G^{o\ddag}$$525.02{\sim}610.99\;J{\cdot}mol^{-1}$의 범위를 나타냈다. 현장적용시험에서 삽입시간과 수지흡착량의 관계는 Langmuir 형태를 따랐으며, 질소는 24시간 경과 후, 인산은 8시간 후에 의사평형에 도달하였다. 따라서 현장에서의 최대 삽입시간은 인산의 평형 도달시간과 하천 내 인산 농도에 의해 결정될 것으로 판단된다. 이상의 결과를 통해 이온교환수지를 수질 중 질소와 인의 모니터링 도구로 활용할 수 있을 것으로 판단되며, 실제 현장에 활용하기 위해서는 온도, 유속, 삽입시간 등의 인자와 하천수 내 이온조성과의 상관관계에 대한 규명과 경험상수의 도출이 필요할 것으로 판단된다.

Keywords

References

  1. Ministry of Environment. (1992) Korean Standard Methods of Water Analysis. pp. 28-63
  2. Han, K W, Cho, J. Y. and Kim, S. C. (1997) Effects of farming on soil contamination and water quality in Keum river districts. Kor. J. Environ. Agric. 16, 19-24
  3. Kwon, S. K, You, M. 1., Jeong, T. M. and Kim, M. S. (1997) Nitrate removal in rural groundwater using ion exchange resin. Kor. J. Environ. Agric. 16, 193-198
  4. Skogley, E. 0. and Dobermann, A. (1996) Synthetic ionexchange resin: soil and environmental studies. 1. Environ. Qual. 25, 13-24 https://doi.org/10.2134/jeq1996.00472425002500010004x
  5. Somasiri, L L. Wand Edwards, A. C. (1992) An ion exchange resin method for nutrient extraction of agricultural advisory soil samples. Commun. Soil Sci. Plant Anal. 23, 645657 https://doi.org/10.1080/00103629209368616
  6. Skogley, E. 0., Georgitis, S. 1., Yang, 1. E. and Schaff, B. E. (1990) The phytoavailability soil test-PST. Commun. Soil Sci. Plant Anal. 21, 1229-1243 https://doi.org/10.1080/00103629009368301
  7. Yang, J. E. and Skogley, E. O. (1992) Diffusion kinetics of multinutrient accumulation by mixed-bed ion exchange resin. Soil Sci. Soc. Am. J. 56. 408-414 https://doi.org/10.2136/sssaj1992.03615995005600020011x
  8. Yang, 1. E., Skogley, E. O. and Schaff, B. E. (1991) Nutrient flux to mixed-bed resin: temperature effects. Soil Sci. Soc. Am. J. 55, 762-767 https://doi.org/10.2136/sssaj1991.03615995005500030021x
  9. Park, 1. (1994) Development of a method for extracting the available heavy metal using ion exchange resin. M.S. Thesis, Kangwon National University, Korea
  10. Park, C. J. (1998) Development of adsorbent for heavy metals by activation of the bark. M.S. Thesis, Kangwon National University, Korea
  11. Moore, 1. W and Pearson, R. G. (1981) In Kinetics and mechanism: Reactions in solution (3rd ed.) John Wiley & Sons, New York
  12. Laidler, K 1. (1997) In Chemical kinetics: Elementary reactions in solution (3rd ed.) Harger & Row Publishers, New York
  13. Lee, 1. Y. (1998) Application of the resin capsule method for monitoring water quality and ion movement in soils. M.S. Thesis, Kangwon National University, Korea
  14. Kim, D. K (1999) Water quality monitoring in the small agricultural watersheds using the mixed-bed ion exchange resin capsule. M.S. Thesis, Kangwon National University, Korea
  15. Arthur, W H. (1995) In Water quality data: analysis and interpretation (1st ed.) CRC Press, New York, pp. 129-165
  16. Langmuir, D. (1997) In Aqueous environmental geochemistry (1st ed.) Prentice-Hall. pp. 343-402
  17. Sparks, D. L. (2003) In Environmental soil chemistry: kinetics of soil chemical processes (2nd ed.) Academic Press, Inc., London, pp. 104-109
  18. Kuyucak, N. and Volesky, B. (1989) Accumulation of cobalt by marine alga. Biotechnol. Bioeng. 33, 809-814 https://doi.org/10.1002/bit.260330703
  19. Harris, D. C. (1999) In Quantitative chemical analysis (5th ed.) W H. Freeman, New York, pp. 92-102
  20. Shin, K. J., Lee, H. W Park, S. C. and Jeon, S. 1. (1993) In The elements of physical chemistry (I st ed.) Panmun Book Co., Korea, pp. 42-112
  21. Lasaga, A. C. (1983) In Kinetics of geochemical processes: Rate laws of chemical reactions (1st ed.) Mineralogical Society of America. pp. 1-68