Characteristics of Flour Ferment Using Lactobacillus acidophilus as Starter

Lactobacillus acidophilus로 발효시킨 밀가루 발효물의 특성

  • Cha, Wook-Jin (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Lee, Jeong-Hoon (Department of Hotel Culinary Arts, Ansan College of Technology) ;
  • Cho, Nam-Ji (Department of Baking Technology, Hyejeon College)
  • 차욱진 (건국대학교 응용생물화학과) ;
  • 이시경 (건국대학교 응용생물화학과) ;
  • 이정훈 (안산공과대학 호텔조리과) ;
  • 조남지 (혜전대학 제과제빵과)
  • Published : 2004.02.28

Abstract

Growth of Lactobacillus acidophilus in flour was investigated for production of noodle and bread. L. acidophilus grew when fermented in flour, and growth continued upon fermentation with salt for 72 hr. pH of L. acidophilus-fermented flour with salt decreased up to 72 hr, reaching 3.06. Fermented flour with salt showed no decomposition as compared to that without salt. In flour fermented by L. acidophilus, amounts of lactic and acetic acids produced increased with incubation time, and reached, after 72 hr incubation, 6,821 and 0.191 mg/g, respectively, resulting in significantly higher production of lactic acid. Viscosity of fermented flour with salt increased, whereas that without salt decreased with incubation time. Results reveal L. acidophilus-fermented flour with salt could be applied as effective agent in noodle and bread productions.

L. acidophilus를 면 제조 시에 첨가할 목적으로 MRS broth 배지를 이용하여 $37^{\circ}C$에서 3일 동안 배양시킨 후 면의 주원료인 밀가루, 물, 소금의 혼합액에 L. acidophilus를 선택 접종시켜 72시간 배양 발효시킨 결과 발효물에 젖산이 6.821mg/g, 초산이 0.191 mg/g 생성되어 발효물에서 젖산의 함량이 높았다. 배양기간 중 발효물의 pH는 저하되며 총산도가 증가되었다. 식염첨가 발효물의 점도는 발효시간의 경과에 따라 증가되었으나, 식염을 첨가하지 않은 발효물의 점도는 감소하였다. 한편 식염을 첨가하지 않은 발효물은 변질이 되어 식염이 보존성에 미치는 효과를 알 수 있었고 형태적 관찰에서 발효물에서 L. acidophilus의 전형적인 간균 형태를 보이고 있음을 확인할 수 있었다.

References

  1. JFS. Code of Hygienic Practice for Fresh Noodles. pp. 12-20. Japan Food Sanitation Association, Tokyo, Japan (2000)
  2. Brown MH, Booth IR. Food Preservatives 3. AVi Van Nostrand ReinHold Co., New York, NY, USA (1991)
  3. Kojima H, Shinnizi O. Effect on foods in treatment of pH control. New Food Ind. 40: 50-63 (1998)
  4. Hanada M, Uchida S. A study of antimicrobial additives in noodle. Japan Food Ind. 21: 345-350 (1974)
  5. Hadanaga K. Food microbiological control and treament. Japan Food Ind. 32: 134-181 (1985)
  6. Kanega JL. Test of noodles. Japan Food Pack. 3: 85-90 (1987)
  7. Park HJ, Yu LS, Kim SK, Lee YS, Kim YB. Prediction of shelflife of noodles by bacterial count. Korean J. Food Sci. Technol. 26: 557-560 (1994)
  8. Cha WJ, Kim KH. Effects of some organic acids on shelf life and textural properties of cooked noodle. J. Agric. Chem. and Biotechnol. 41: 166-174 (1998)
  9. Cai J. Preservation of fresh noodle by irradiation. Radiat. Phys. Chem. 2: 35-38 (1998)
  10. Kim DH, Yook HS, Ahn HJ, Cho CH. Changes of microbiological and general quality characteristic of gamma irradiated halfcooked noodle. J. Fd. Hyg. Safety 15: 256-261 (2000)
  11. Lee JW, Lee HH, Rhim JW. Shelf life extention of white rice cake and wet noodle by the treatment with chitosan. Korean J. Food Sci. Technol. 32: 828-833 (2000)
  12. Nagai J. Technology of U-dong. Food Press Co., Tokyo, Japan. pp. 90-91 (1953)
  13. Noh KH. A study on pollen-food safety applied with lactic acid bacteria (LAB) L. acidophilus. PhD thesis, Kyungpook National University, Daegu, Korea (1997)
  14. Toshikuni S. Functionality of fruit acid. Flavor 9: 91-111 (1992)
  15. Cho NJ, Lee SK, Kim SK, Joo HK. Effect of wheat flour brew with Bifidobacterium bifidum on rheological properties of wheat flour dough. Korean J. Food Sci. Technol. 30: 832-841 (1998)
  16. Morichi T. Characteristic and utilization of lactic acid bacteria; Progress in recent researches. Milk Sci. 46: 1-20 (1997)
  17. Kim JH. Development of a new production process for rice yogurt using Lactobacillus amylovorus. Gyeong Sang National Univ., DaeSan Rep. 3: 265-271 (1995)
  18. AACC. Approved Method of the AACC. 8th ed. American Association of Cereal Chemists, St. Paul, MN, USA. pp. 2-195 (1983)
  19. Prescott SC, Dunn CG. Industrial Microbiology. McGraw-Hill Book Co., Columbus, OH, USA. pp. 370-392 (1959)
  20. Jung HK. Studies on optimum cultural conditions for the production of extracellular polysaccharide by lactic acid bacteria. PhD thesis, Sung Kyun Kwan University, Seoul, Korea (1986)
  21. Lee SK, Kim KC. Lactic acid fermentation of barley malt syrup by Lactobacillus acidophilus J. Korean Agri. Chem. Soc. 31: 255-260 (1988)
  22. Lee JS, Ko YT, Paik JK. Effects of defatted soy milk on the growth of L. acidophilus. J. Korean Agri. Chem. Soc. 27: 7-13 (1984)
  23. Kojima M, Togawa T, Murase M. Effects of addition of water and sodium chloride on microstructure and reological properties of noodle. Nippon skukuhin Kakaku Kaishi 42: 899-906 (1995) https://doi.org/10.3136/nskkk.42.899
  24. Peter HA, Nicolas MS, John GHR. Bergey's Manual of Systematic Bacteriology 2. Williams & Wilkins Co., Baltimore, MD, USA. pp. 1209-1234 (1986)
  25. Kim YH. A study on the functional bread making by the supplementation with sericultural products. PhD thesis, Yung Nam University, Kyungsan, Korea (2000)
  26. Wilkinson JF. The extracellular polysacchrides of bacteria. Bacteriol. Rev. 22: 46-73 (1958)
  27. Jung HK. Studies on optimum cultural conditions for the production of extracellular polysaccharide by lactic acid bacteria. PhD thesis, Sung Kyun Kwan University, Seoul, Korea (1986)
  28. Pace GW, Righelato RC. Production of extracelluar microbial polysaccharides. Adv. Biochem. Eng. 15: 41-70 (1984)
  29. Vuyst LD, Bart D. Heteropolysaccharide from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177 (1999) https://doi.org/10.1016/S0168-6445(98)00042-4