Effect of Hot Water Treatment on Storage Quality of Minimally Processed Onion

열수처리가 신선 편의가공 양파의 저장품질에 미치는 효과

  • Published : 2004.04.30

Abstract

Storage quality of minimally processed onion as influenced by hot-water dipping was investigated to examine feasibility of mild heat treatment as efficient post-processing method. fresh onions were peeled, trimmed, and dipped in hot water at various temperatures ($50-80^{\circ}C$) for 1 min. Heat-treated onions were cooled, de-watered, packaged in low density polyethylene (LDPE) film pouches ($63\;{\mu}m\;thickness$), and stored at $10^{\circ}C$. Samples treated at higher temperatures ($70-80^{\circ}C$) showed significant increases in flesh weight loss and discoloration during storage as compared to others. Hot-water dipping remarkably reduced initial microbial load of prepeeled onions, with over 1 log cycle decrease in aerobic bacterial count. After 7 days storage, no significant differences in viable aerobe count were observed among treated and untreated samples, with both showing $10^{6}-10^{7}\;CFU/g$. For sensory attributes including discoloration, wilting, decay, and visual quality, onions treated with hot-water dipping at $60^{\circ}C$ scored highest. Results suggested hot-water dipping at specific condition as practical post-processing treatment could effectively prolong shelf life of minimally processed onion.

신선 편의가공 채소류의 전처리기술로서 중온처리의 적용 가능성을 확인하고자 박피 양파의 열수처리에 따른 저장중 품질특성 변화를 살펴보았다. 건조외피 제거, 절단, 수세를 거친 양파 시료에 대해 $50-80^{\circ}C$의 열수로 1 분간 침지한 후 물기를 제거하고 $63\;{\mu}m$ 두께의 LDPE 필름에 밀봉 포장하여 $10^{\circ}C$에 저장하면서 이화학, 미생물, 관능적 특성 변화를 측정하였다. 생체 중량감소 및 절단 표면색 변화는 상대적으로 고온($70,\;80^{\circ}C$) 처리구에서만 유의적인 증가를 나타내었고, 미생물의 경누 열처리 직후 고온 처리구에서 90% 이상의 생균수 감균 효과를 확인할 수 있었으나, 저장 중기 이후에는 처리구별로 유의적인 생균수 차이를 구분할 수 없이 약 $10^6-10^7\;CFU/g$ 수준을 나타내었다. 관능 평가에서는 저장 28일까지 $60^{\circ}C$ 중온 처리구가 변색, 시듦, 부패 항목에서 상대적으로 가장 낮은 점수를 나타내었고 외관 품질도 비교적 우수하여 박피 양파의 저장중 품질유지에 가장 유리한 열수 처리온도임을 확인할 수 있었다.

Keywords

References

  1. King Jr AD, Bolin HR. Physiological and microbiological storage stability of minimally processed fruits and vegetables. Food Technol. 43(2): 132-135, 139 (1989)
  2. Varoquaux P, Wiley R. Biological and biochemical changes in minimally processed refrigerated fruits and vegetables. pp. 226- 268. In: Minimally Processed Refrigerated Fruits and Vegetables. Wiley RC (ed). Chapman & Hall, New York, NY, USA (1994)
  3. Ahvenainen R. New approaches in improving the shelf life of minimally processed fruit and vegetables. Trend Food Sci. Technol. 7: 179-187 (1996) https://doi.org/10.1016/0924-2244(96)10022-4
  4. Alzamora SM, Tapia MS, Lopez-Malo A. Minimally Processed Fruits and Vegetables: Fundamental Aspects and Applications. Aspen Publishers Inc., Gaithersburg, MD, USA. pp. 1-97 (2000)
  5. Lamikanra O. Fresh-cut Fruits and Vegetables: Science, Technology, and Market. CRC Press LLC, Boca Raton, FL, USA. pp. 267-338 (2002)
  6. Ohlsson T. Minimal processing-preservation methods of the future: an overview. Trend Food Sci. Technol. 5: 341-344 (1994) https://doi.org/10.1016/0924-2244(94)90210-0
  7. Nguyen-the C, Carlin F. The microbiology of minimally processed fresh fruits and vegetables. CRC Crit. Rev. Food Sci. Nutr. 34: 371-401 (1994) https://doi.org/10.1080/10408399409527668
  8. Lurie S. Postharvest heat treatments. Postharv. Biol. Technol. 14: 257-269 (1998) https://doi.org/10.1016/S0925-5214(98)00045-3
  9. Ben-Yehoshua S, Peretz J, Rodov V, Nafussi B. Postharvest application of hot water treatment in citrus fruits: The road from laboratory to the packing-house. Acta Hortic. 518: 19-28 (2000)
  10. Hong SI, Kim DM. Influence of oxygen concentration and temperature on respiratory characteristics of fresh-cut green onion. Int. J. Food Sci. Technol. 36: 283-290 (2001) https://doi.org/10.1046/j.1365-2621.2001.00456.x
  11. Manzano M, Citterrio B, Maifreni M, Paganessi M, Comi G. Microbial and sensory quality of vegetables for soup packaged in different atmospheres. J. Sci. Food Agric. 67: 521-529 (1995) https://doi.org/10.1002/jsfa.2740670415
  12. Pirovani ME, Piagentini AM, Guemes DR, Di Pentima JH. Quality of minimally processed lettuce as influenced by packaging and chemical treatment. J. Food Qual. 22: 475-484 (1998)
  13. Kader AA, Lipton WJ, Morris LL. Systems for scoring quality of harvested lettuce. Hort Sci. 8: 408-409 (1973)
  14. Lee HH, Hong SI, Kim DM, Han YS. Effect of hot water treatment on biochemical changes in minimally processed onion. Food Sci. Biotechnol. 12: 445-450 (2003)
  15. Cantwell M. Properties and recommended conditions for storage of fresh fruits and vegetables. Available from: http://postharvest.ucdavis.edu/produce/storage/index.shtml. Accessed Feb. 18, 2004
  16. Kader AA, Zagory D, Kerbel EL. Modified atmosphere packaging of fruit and vegetables. CRC Crit. Rev. Food Sci. Nutr. 28: 1-30 (1989) https://doi.org/10.1080/10408398909527506
  17. O'Connor-Shaw RE, Roberts R, Ford AL, Nottingham SM. Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. J. Food Sci. 59: 1202-1206, 1215 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb14676.x
  18. Francis GA, Thomas C, O'Beirne D. The microbiological safety of minimally processed vegetables. Int. J. Food Sci. Technol. 34: 1-22 (1999) https://doi.org/10.1046/j.1365-2621.1999.00253.x
  19. Heard GM. Microbiology of fresh-cut produce. pp. 187-248. In: Fresh-cut Fruits and Vegetables: Science, Technology, and Market. Lamikanra O (ed). CRC Press LLC, Boca Raton, FL, USA (2002)
  20. Cantwell MI, Hong G, Suslow TV. Heat treatments control extension growth and enhance microbial disinfection of minimally processed green onions. Postharv. Biol. Technol. 36: 732-737 (2001)
  21. Kim DM, Smith NL, Lee CY. Effect of heat treatment on firmness of apples and apple slices. J. Food Process. Preserv. 18: 1-8 (1994) https://doi.org/10.1111/j.1745-4549.1994.tb00237.x
  22. Jordan JL, Shewfelt RL, Prussia SE, Hurst WC. Estimating the price of quality characteristics for tomatoes: Aiding the evaluation of the postharvest system. Hort Sci. 20: 203-205 (1985)