Properties of Amaranth Flour Processed by Various Methods

다양한 방법으로 가공처리한 아마란스 가루의 특성

  • Published : 2004.04.30

Abstract

Processed foods were developed using amaranth starch and flours. Amaranth seeds were untreated (UT), defatted (DF), germinated (GM), roasted (RT), popped (POP), and extruded (EX1 and EX2). Amaranth flours showed A-type pattern on X-ray diffractograms, while crystallinity was not observed in POP, EX1, and EX2. POP and EX1 showed highest (740.3%) and lowest (38.5%) water-binding capacities, respectively. Transmittances of RT, POP, EX1, and EX2 flour suspensions were higher than those of others. Transmittance of amaranth starch and flours differed with processing methods. RT, POP, EX1, and EX2 showed higher transmittance at $60^{\circ}C$. Initial pasting temperature of amaranth flours by RVA were $68.1-73.0^{\circ}C$, and peak viscosities of GM and RT were 31.6 and 401.1 RVU, respectively. Melting endotherms of POP, EX1, and EX2 were not observed in DSC thermograms.

아마란스를 식품가공용 중간소재로 개발하기 위해 아마란스 종실을 1차 가공처리한 후 전분과 각 가루의 가공특성을 조사 하였다. 아마란스는 전분, 무처리(UT), 탈지(DF), 발아(GM), 로 스팅(RT), 팽화(POP), 압출성형(EK1, EX2)하여 시료로 사용하였다. 아마란스 가루의 결정형은 전형적인 A형을 보였고 탈지, 발아, 로스팅 처리에 의한 결정형과 결정강도의 변화는 없었다. 그러나 팽화 처리와 압출성형에 의해서는 결정형이 사라졌다. 시료의 물 결합능력은 가공방법에 따라 차이가 있어 POP 시료의 물 결합능력이 740.3%로 가장 컸고, EX1이 35.5%로 가장 낮았다. 아마란스 가루의 광투과도 특성은 $60^{\circ}C$에서 차이가 있어 RT, POP, EX1, EX2 시료의 광투과도가 높게 나타났다. RVA로 측정한 아마란스 시료의 호화온도는 POP와 EX1, EX2를 제외하고 $68.1-73.0^{\circ}C$이었고, 피크점도는 GM이 31.6 RVU, RT가 401.1 RVU로 큰 차이가 있었다. DSC결과 또한 RVA 결과와도 일치하여 POP, EX1, EX2는 milling endotherm이 나타나지 않았다.

Keywords

References

  1. Choi CR, Choi HJ, Kim SR, Lee JH, Shin MS. Comparisons of characteristics of amaranth starches isolated from five cultivars grown in Korea. Korean J. Food Sci. Technol. 32: 252-257 (2000)
  2. Hoover R, Sinnott AW, Perera C. Physicochemical characterization of starches from Amaranthus cruentus grains. Starch 50: 156-163 (1998)
  3. Breene WM. Food uses of grain amaranth. Cereal Foods World 36: 426-430 (1991)
  4. Saunders RM, Becker R. Amaranthus: A potential food and feed resource, Vol. 5, pp. 357. In: Advances in Cereal Science Technology. Pomeranz Y (ed). Am. Assoc. Cereal Chem., St. Paul, MN, USA (1984)
  5. Baker LA, Rayas-Duarte P. Freeze-thaw stability of amaranth starch and the effects of salt and sugars. Cereal Chem. 75: 301-307 (1998) https://doi.org/10.1094/CCHEM.1998.75.3.301
  6. Myers DJ, Fox SR. Alkali wet-milling characteristics of pearled and unpearled amaranth seed. Cereal Chem. 71: 96-99 (1994)
  7. Teutonico RA, Knorr D. Amaranth: Composition, properties, and applications of a rediscovered food crop. Food Technol. 39: 49-60 (1985)
  8. Kim JS, Ryoo HJ. Application to the biscuits manufacture of processed amaranth seeds. Korean J. Food Nutr. 4: 321-325 (2002)
  9. Mendoza C, Bressani R. Nutritional and functional characteristics of extrusion-cooked amaranth flour. Cereal Chem. 64: 218-222 (1987)
  10. Sanchez-Marroquin A, Domingo MV, Maya S, Saldana C. Amaranth flour blends and fractions for baking applications. J. Food Sci. 50: 789-794 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13797.x
  11. Griffith LD, Castell-Perez ME, Griffith ME. Effect of blend and processing method on the nutritional quality of weaning foods made from select cereals and legumes. Cereal Chem. 75: 105-112 (1998) https://doi.org/10.1094/CCHEM.1998.75.1.105
  12. Khetarpaul N, Chauhan BM. Effect of germination and fermentation on in vitro starch and protein digestibility of pearl millet. J. Food Sci. 55: 883-884 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb05261.x
  13. Nnanna IA, Dixon Phillips R. Protein and starch digestibility and flatulence potential of germinated cowpeas (Vigna unguiculata). J. Food Sci. 55: 151-183 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb06039.x
  14. Lorenz K. Amarantus hypochondriacus- Characteristics of the starch and baking potential of the flour. Starch 33: 149-153 (1981) https://doi.org/10.1002/star.19810330502
  15. Perez E, Bahnassey YA, Breene WM. A simple laboratory scale method for isolation of amaranth starch. Starch 45: 211-214 (1993) https://doi.org/10.1002/star.19930450605
  16. Medcalf DF, Gilles, KA. Wheat starches. I. Comparison of physicochemical properties. Cereal Chem. 42: 558-568 (1965)
  17. Schoch TJ, Leach W. Whole starches and modified starches, Vol. II, pp. 106-108. In: Methods in Carbohydrate Chemistry. Whistler RL (ed). Academic Press, New York, NY, USA (1964)
  18. Maher GG. Alkali gelatinization of starches. Starch 35: 226-230 (1983) https://doi.org/10.1002/star.19830350703
  19. Lara N, Ruales J. Popping of amaranth grain (Amaranthus caudatus) and its effect on the functional, nutritional and sensory properties. J. Sci. Food Agric. 82: 797-805 (2002) https://doi.org/10.1002/jsfa.1069
  20. Paredes-Lopez O, Carabez-Trejo A, Perez-Herrera S, Gonzalez- Castaneda J. Influence of germination on physico-chemical properties of amaranth flour and starch microscopic structure. Starch 40: 290-294 (1988) https://doi.org/10.1002/star.19880400804
  21. Muralikrishna G, Malleshi NG, Desikachar HSR, Tharanathan RN. Effect of popping on the properties of some millet starches. Starch 38: 48-51 (1986) https://doi.org/10.1002/star.19860380204
  22. Marero LM, Payumo EM, Librando EC, Lainez WN, Gopez MD, Homma S. Technology of weaning food formulations prepared from germinated cereals and legumes. J. Food Sci. 53: 1391-1395 (1988) https://doi.org/10.1111/j.1365-2621.1988.tb09284.x
  23. Vargas-Lopez JM, Paredes-Lopez O, Ramirez-Wong B. Physicochemical properties of extrusion-cooked amaranth under alkaline conditions. Cereal Chem. 68: 610-613 (1991)
  24. Saklar S, Ungan S, Katnas S. Microstructural changes in hazelnuts during roasting. Food Res. Int. 36: 19-23 (2003) https://doi.org/10.1016/S0963-9969(02)00103-5
  25. Ilo S, Liu Y, Berghofer E. Extrusion cooking of rice flour and amaranth blends. Lebensm. -Wiss. u. -Technol. 32: 79-88 (1999) https://doi.org/10.1006/fstl.1998.0497