Preparation of Flakes by Extrusion Cooking Using Barley Broken Kernels

보리 파쇄립을 이용한 압출성형에 의한 후레이크 제조

  • Published : 2004.04.30

Abstract

Barley flakes were developed by extrusion cooking using broken kernels, by-products of the barley pearling process. Broken kernels from both non-waxy and waxy barley broken kernels were sufficiently gelatinized at the barrel temperature of over $100^{\circ}C$ and the moisture content of broken kernels of over 35%. Cutting and flaking roll separating properties of pellets prepared from non-waxy barley broken kernels were better than those of waxy barley broken kernels. Characteristics of pellets prepared by extrusion cooking in different mixing ratios of non-waxy and waxy barley broken kernels were investigated. As the mixing ratio of waxy barley broken kernels increased, RVA peak viscosity, apparent viscosity, and yield stress of prepared pellets decreased, while flow behavior index increased. As the mixing ratio of waxy barley broken kernels increased, compressive strength and bulk density of deep-fat fried flakes drastically decreased, and the size of air cells on cross-section increased, and thickness of cell-constituting bodies decreased. Sensory evaluation results showed that acceptability for texture and taste of flakes inclosed as the mixing ratio of waxy barley broken kernels increased, and optimum mixing level of waxy barley broken kernels appeared to be 30-40%.

쌀보리와 거의 유사한 식품학적 특성을 지니지만 활용도가 극히 낮은 보리 파쇄립을 이용하여 압출성형에 의한 보리 후레이크를 개발하였다. 압출성형시 $100^{\circ}C$ 이상의 온도, 35% 이상의 수분함량에서 파쇄립이 충분히 호화되었으며, 메성보리 파쇄립의 경우 찰성보리에 비해 절단성, roll 분리성 등이 우수하였다. 메성 및 찰성보리 파쇄립의 혼합비율을 달리하면서 압출성형하여 제조한 pellet의 특성을 조사한 결과 찰성보리 파쇄립의 혼합비율이 증가할수록 RVA 상의 최고점도가 감소하였고 또한 겉보기 점도와 항복력이 감소한 반면 유동지수는 증가하였다. 그리고 이를 oil frying하여 제조한 후레이크의 특성을 조사한 결과 찰성보리 파쇄립의 혼합비율이 증가함에 따라 압착강도와 bulk density가 크게 감소하였고 단면상에서의 air cell 크기가 커지고 cell을 이루는 body가 얇아지는 것으로 나타났다. 그리고 관능검사 결과 찰성보리 파쇄립의 혼합비율이 증가할수록 조직감과 맛에 대한 기호도가 증가하였고 메성과 찰성보리 파쇄립의 혼합비율 (60-70):(30-40) 처리구의 경우 관능적으로 가장 바람직한 것으로 나타났다.

Keywords

References

  1. Tamagawa K, Iizuka S, Fukushima S, Endo Y, Komiyama Y. Antioxidative activity of polyphenol extracts from barley bran. Nippon Shokuhin Kagaku Kaishi 44: 512-515 (1997) https://doi.org/10.3136/nskkk.44.512
  2. Seog HM, Seo MS, Kim YS, Lee YT. Physicological properties of barley bran, germ and broken kernel as pearling by-products. Food Sci. Biotechnol. 11: 623-627 (2002)
  3. KFRI. Development of High Value-added Food Materials and Processed Foods Using Barley Pearling By-products. Korea Food Research Institute, Bundang, Korea (2003)
  4. Midden TM. Twin screw extrusion of corn flakes. Cereal Foods World 34: 941-943 (1989)
  5. Rokey GJ. RTE breakfast cereal flake extrusion. Cereal Foods World 40: 422-426 (1995)
  6. Kainuma K, Matsunaga A, Itagawa M, Kobayashi S. New enzyme system $\beta$-amylase-pullulanase to determine the degree of gelatinization and retrogradation of starch or starch products. J. Jpn. Soc. Starch Sci. 28: 235-239 (1981) https://doi.org/10.5458/jag1972.28.235
  7. Rao MA, Anantheswaran RC. Rheology of fluids in food processing. Food Technol. 36: 116-126 (1982)
  8. Anderson RA, Conway HF, Pfeifer VF, Griffin EL. Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci. Today 14: 4-12 (1969)
  9. Lee YR, Choi YH, Koh HJ, Kang MY. Quality characteristics of brown rice flakes prepared giant embryonic rice and normal rice cultivars. Korean J. Food Sci. Technol. 33: 540-544 (2001)