Quality Characteristics of Bijijang in Different Fermentation Conditions

발효 조건을 달리한 비지장의 품질특성

  • 임성경 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 유선미 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 김태영 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 전혜경 (농촌진흥청 농업과학기술원 농촌자원개발연구소)
  • Published : 2004.06.30

Abstract

Changes in quality characteristics of Bijijang (fermented soybean curd residus) prepared at $35^{\circ}C\;and\;40^{\circ}C$ for 0, 12, 24, 36, and 48 hr were investigated. Acidity of Bijijang increased, whereas pH and Hunter's color values decreased during fermentation. Immediately after Bijijang preparation, ${\alpha}-and\;{\beta}-amylase$ activities were very low, ${\beta}-Amylase$ activity during fermentation increased rapidly, with those fermented at $40^{\circ}C$ higher than at $35^{\circ}C$. Neutral pretense activity was significantly higher than acidic pretense activity, and increased gradually after 12 hr. Change in total nitrogen content in Bijijang was insignificant, whereas contents of amino-type and water-soluble nitrogens increased significantly during fermentation. Major free amino acids of Bijijang were Arg, Pro, Glu, Thr, Ser, and Lys at initial fermenting stage, and, as fermentation progressed, contents of Cys, Met Glu, Ile, Leu, and Phe increased. Reducing sugar contents of Bijijang fermented at $40^{\circ}C$ were higher than those fermented at $35^{\circ}C$. Sucrose content decreased and glucose content increased. Glucoside (genistin and daidzin) contents decreased and aglycone (genistein and daidzein) contents increased during preparation of Biji and fermentation of Bijijang. Contents of free sugars and isoflavones were higher in Bijijang fermented at $40^{\circ}C$ than at $35^{\circ}C$. Based on these results, fermentation at $40^{\circ}C$ for 48 hr was determined to be optimum fermentation condition for Bijijang.

전통 장류의 하나인 비지장의 계승발전에 기여하고, 두유 및 두부 제조과정에서 대량으로 얻어지는 비지를 효과적으로 이용하고자 발효 온도($35^{\circ}C$$40^{\circ}C$)와 시간(0, 12, 24. 36. 48시간)에 따른 품질 특성을 조사하였다. 발효과정 중 비지장의 염도와 총산 함량은 증가하였고, pH는 발효 중 감소하였다. 발효기간 중 비지장의 명도는 점차 감소하였으며 $40^{\circ}C$에서 발효시킨 비지장의 적색도와 황색도가 $35^{\circ}C$에서 발효시킨 비지장의 값보다 높게 나타났다. ${\beta}-amylase$ 활성도는 초기 발효 12시간동안 급격히 증가하였고 $35^{\circ}C$보다 $40^{\circ}C$에서 발효 시 더 높은 활성도를 보였다. 중성 pretense 황성도가 산성 protease 활성도보다 월등하게 높았으며 발효 12시간까지 감소하였다가 점차 증가하는 경향을 보였다. 총질소 함량, 아미노산성 질소 함량, 수용성 질소 함량 모두 비지 제조시 감소하였으나 아미노산성 질소 함량과 수용성 질소 함량은 비지장의 발효가 진행됨에 따라 증가하였다. 담금 직후 비지장의 주요 유리 아미노산은 Arg, Pro, Glu, Tyr, Ser, Lys 순이었고, 발효에 의해 Glu, Ile, Leu, Phe 그리고 함황 아미노산인 Cys과 Met은 급격히 증가하여 비지장의 맛 성분에 영향을 주었다. 비지장의 발효과정 중 환원당 함량은 증가하였으며 $40^{\circ}C$에서 발효한 비지장에서 높게 나타났다. 비지장의 발효과정 중 이당류인 sucrose 함량은 감소하고 단당류인 glucose 함량은 증가하였고 $40^{\circ}C$에서 발효한 비지장에서 glucose 함량이 높게 나타났다. 대두로 비지를 제조했을 때와 비지장의 발효과정 중 isoflavones 조성은 glucosides 함량은 감소하고 aglycones 함량은 증가하였으며 $40^{\circ}C$에서 발효한 비지장에서 그 증감의 폭이 컸다. 이상의 결과로부터 비지장의 맛과 인체 이용율에 바람직한 영향을 주는 요인이라 생각되는 ${\beta}-amylase$와 중성 protease 활성도, 단백질 분해율과 용해율, 유리 아미노산 총함량 및 조성, 환원당과 glucose 함량, genistein과 daidzein의 함량 등을 고려했을 때 품질이 우수한 비지장을 얻기 위해서는 $40^{\circ}C$에서 48시간 발효시키는 것이 바람직할 것으로 생각된다.

Keywords

References

  1. Woo EY, Kim MJ, Shin WS, Lee KA, Kim KS. Production of protein hydrolyzate, that can be used as food additives, from Okara. Korean J. Food Sci. Technol. 33: 769-773 (2001)
  2. Van der Reit WB, Wight AW, Clillierers KR, Datel JM. Food chemical investigation of Tofu and its byproduct Okara. Food Chem. 34: 193-202 (1989) https://doi.org/10.1016/0308-8146(89)90140-4
  3. Hackler LR, Stillings BR, Ploimeni BJ. Correlation of amino acid indexes with nutritional quality of several soybean fraction. Cereal Chem. 44: 638-344 (1973)
  4. Ma CY, Liu WS, Kwok KC, Kwok F. Isolation and characterization of proteins from soymilk residue (Okara). Food Res. Int. 29: 799-805 (1996) https://doi.org/10.1016/0963-9969(95)00061-5
  5. Yamaguchi F, Ota Y, Hatanaka C. Extraction and purification of pectic polysaccharides from soybean Okara and enzymatic analysis of their structures. Carbohydr. Polym. 30: 265-273 (1996) https://doi.org/10.1016/S0144-8617(96)00046-X
  6. Khare SK, Jha K, Gandhi AP. Citric acid production from Okara(soy-residue) by solid-state fermentation. Biores. Technol. 54: 323-325 (1995) https://doi.org/10.1016/0960-8524(95)00155-7
  7. Shurtleff W, Aoyagi A. Tofu and Soymilk Production. New Age Food Study Center, Lafayette, CA, USA (1995)
  8. Kang KH, Lee DS. Studies on the Tofu-residue recycling. Korean Sci. Ind. 24: 31-35 (1991)
  9. Ohno A, Ano T, Shoda M. Use of soybean curd residue, Okara, for the solid state substrate in the production of a lipopeptide antibiotic, Iturin A, by Bacillus subtilis NB22. Process Biochem. 31: 801-806 (1996) https://doi.org/10.1016/S0032-9592(96)00034-9
  10. Kim DS, Seol MH, Kim HD. Changes in quality of soybean curd residue as affected by different drying methods. J. Korean Soc. Food Nutr. 25: 453-459 (1996)
  11. Kim KS, Park EH, Bae CY, Kim KC, Lee SH, Sohn HS. Solubilization of tofu-residue using multienzyme derived from Aspergillus niger CF-34. Korean J. Food Sci. Technol. 26: 484-489 (1994)
  12. Cho MK, Lee WJ. Preparation of high-fiber bread with soybean curd residue and Makkolli (rice wine) residue. J. Korean Soc. Food Sci. Technol. 10: 1-7 (1996)
  13. Sohn JW, Kim WJ. Some quality changes in soybean curd by addition of dried soymilk residue. Korean J. Food Sci. Technol. 24: 522-525 (1985)
  14. Foundation for the Preservation of Cultural Properties. Korean Cuisine Fermented and Processed Food. Hollym Corporation, Seoul, Korea (2001)
  15. Lee YK. Preparation Method of Joseon Cuisine. Institute of Korean Royal Cuisine, Seoul, Korea (2001)
  16. Kim JS, Han GJ, Yoo SM. Survey on Korean Traditional Foods. National Rural Living Science Institute., Suwon, Korea (2001)
  17. The Korean Society of Food Science and Nutrition. Handbook of Experiments in Food Science and Nutrition. Hyoil Co., Ltd., Seoul, Korea (2000)
  18. Oh HI, Shon S, Kim J. Changes in microflora and enzyme activities of Kochujang prepared with Aspergillus oryzae, Bacillus licheniformis, and Saccharomyces rouxii during fermentation. Korean J. Food Sci. Technol. 32: 410-416 (2000)
  19. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-431 (1959) https://doi.org/10.1021/ac60147a030
  20. Kim CH, Park JS, Sohn HS, Chung CW. Determination of isoflavone, total saponin, dietary fiber, soy oligosaccharides, and lecithins from commercial soy products based on the one serving size. Korean J. Food Sci. Technol. 34: 96-102 (2002)
  21. Hackler LR, Hand DB, Steinkraus KH, Van Buren JP. A comparison of the nutritional value of protein from several soybean fractions. J. Nutr. 80: 205-210 (1963)
  22. Lee GJ. Changes in carbohydrate composition during the fermentation of soybean curd residue with enzymes. Korean Biochem. J. 17: 44-50 (1984)
  23. Lee MS, Kim KH, Lee GJ. Microbiological studies and biochemical changes in fermenting soybean cud residue during fermentation. Korean J. Food Sci. Technol. 19: 520-527 (1987)
  24. Baek J, Lee IS, Lee SP. Characterization and fermentation characteristics of lactic acid bacteria isolated from soybean curd residue (Biji). J. Korean Soc. Food Sci. Nutr. 31: 583-588 (2002) https://doi.org/10.3746/jkfn.2002.31.4.583
  25. Park SK, Seo KI, Choi SH, Moon JS, Lee YH. Quality assessment of commercial Doenjang prepared by traditional method. J. Korean Soc. Food Sci. Nutr. 29: 211-217 (2000)
  26. Kim HJ, Sohn KH, Chae SH, Kwak TK, Yim SK. Brown color characteristics and antioxidizing activity of Doenjang extracts. Korean J. Soc. Food Cookery Sci. 18: 644-654 (2002)
  27. Jana M, Pati B. Thermostable, salt-tolerant $\alpha$-amylase from Bacillus sp. MD-124. J. Basic Microbiol. 37: 323-326 (1997) https://doi.org/10.1002/jobm.3620370504
  28. Rhee SH, Cheigh HS. Studies on the lipids in Korean soybean fermented foods. J. Korean Soc. Food Nutr. 14: 67-71 (1985)
  29. Joo HK, Kim DH, Oh KT. Chemical composition changes in fermented Doenjang depend on Doenjang koji and its mixture. J. Korean Agric. Chem. Soc. 35: 351-360 (1992)
  30. Park JS, Lee MY, Kim JS, Lee TS. Compositions of nitrogen compound and amino acid in soybean paste (Doenjang) prepared with different microbial sources. Korean J. Food Sci. Technol. 26: 609-615 (1994)
  31. Franke A, Custer L, Cerna C, Narala K. Rapid HPLC analysis of dietary phytoestrogens from legumes and from human urine. Proc. Soc. Exp. Biol. Med. 208: 18-26 (1995) https://doi.org/10.3181/00379727-208-43826
  32. Jackson C, Dini JP, Lavandier D, Rupasinghe HPV, Faulkner H, Poysa V, Buzzell D, DeGrandis S. Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem. 37: 1117-1123 (2002) https://doi.org/10.1016/S0032-9592(01)00323-5
  33. Wang HJ, Murphy PA. Isoflavone content of commercial soybeanfoods. J. Agric. Food Chem. 42: 1666-1673 (1994) https://doi.org/10.1021/jf00044a016