Effect of Sigma Factor ${\sigma}^{B}$ on Biofilm Formation of Listeria monocytogenes in High Osmotic and Low Temperature Conditions

고삼투압 및 저온 조건에서 sigma factor ${\sigma}^{B}$가 Listeria monocytogenes biofilm 생성에 미치는 영향

  • Park, Sang-Gyu (Division of Life and Environmental Science, Daegu University) ;
  • Park, Shin (Division of Life and Environmental Science, Daegu University)
  • 박상규 (대구대학교 생명환경학부) ;
  • 박신 (대구대학교 생명환경학부)
  • Published : 2004.06.30

Abstract

Effects of sigma factor (${\sigma}^{B}$) on biofilm formation in Listeria monocytogenes 10403S and ${\sigma}^{B}-deficient$ sigB null mutant were studied under high osmotic and low temperature conditions. In brain heart infusion (BHI) medium containing 6% NaCl, wild type 10403S and ${\sigma}^{B}-deficient$sigB null mutant formed biofilms of $6.83{\pm}0.38\;and\;5.33{\pm}0.45\;log\;cfu/cm^{2}$, respectively. L. monocytogenes 10403S in BHI medium containing 6% NaCl formed 4.7 times larger biofilm than without NaCl. Culture of L. monocytogenes 10403S and sigB null mutant at $4^{\circ}C$ did not show any significant differences in biofilm formation. The results suggest biofilm formation is activated by ${\sigma}^{B}$ and NaCl, whereas not affected by low temperature stress in L. monocytogenes 10403S. More studies are necessary to determine biofilm formation mechanism in osmotolerant L. monocytogenes.

L. monocytogenes가 biofilm을 생성하는데 ${\sigma}^{B}$가 어떤 영향을 미치는가를 구명하기 위해 L monocytogenes wild type인 10403S와 ${\sigma}^{B}$를 제거한 sigB null mutant의 biofilm 생성능을 고삼투압 및 저온 조건에서 비교하였다. 고삼투압 조건인 6%의 NaCl이 첨가된 BHI 배지에서 배양된 L. monocytogenes 10403S는 배양 72시간 후 $6.83{\pm}0.38\;log\;cfu/cm^{2}$의 biofilm을 생성하였으며, sigB null mutant의 경우는 $5.33{\pm}0.45log\;cfu/cm^{2}$ 의 biofilm을 생성하였는데, L. monocytogenes 10403S가 sigB null mutant보다 31.8배나 많은 biofilm을 생성하였다. 또한 L. monocytogenes 10403S를 6%의 NaCl이 첨가된 BHI 배지에서 배양했을 시 NaCl을 첨가하지 않은 배지에서 배양한 경우보다 4.7배나 많은 biofilm을 생성하였는데, L. monocytogenes 10403S와 같이 ${\sigma}^{B}$가 존재하는 경우 고삼투압 조건에서 biofilm을 더욱 많이 생성하였으며, ${\sigma}^{B}$가 biofilm의 생성에 영향을 미친다고 할 수 있었다. 또한 저온 조건($4^{\circ}C$ 배양)에서 ${\sigma}^{B}$가 biofilm 생성에 영향을 미치는지를 조사하였는데, ${\sigma}^{B}$는 저온 스트레스 시 biofilm 생성에 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Farber JM, Losos JZ. Listeria monocytogenes: a foodborne pathogenes. CMAJ 138: 413-418 (1988)
  2. Riedo FX, Pinner RW, Tosca DL, Cartter ML, Graves LM, Reeves MW, Weaver RE, Plikaytis BD, Broome CV. A pointsource foodborne listeriosis outbreak: documented incubation period and possible mild illness. J. Infect. Dis. 170: 693-696 (1994) https://doi.org/10.1093/infdis/170.3.693
  3. Mead P, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emer. Infect. Dis. 5: 607-625 (1999) https://doi.org/10.3201/eid0505.990502
  4. Loewen PC, Hengge-Aronis R. The role of sigma factor $O^{-B}$(katF) in bacterial global regulation. Annu. Rev. Microbiol. 48: 53-80 (1994) https://doi.org/10.1146/annurev.mi.48.100194.000413
  5. Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kasper CW. RpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 62: 1822-1824 (1996)
  6. Dineen SS, Takeuchi K, Soudah J, Boor K. Persistence of Escherichia coli O157:H7 in dairy fermentation systems. J. Food Prot. 61: 1602-1608 (1998)
  7. Haldenwang WG, Losick R. Novel RNA polymerase $\sigma$ factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77: 7000-7004 (1980) https://doi.org/10.1073/pnas.77.12.7000
  8. Wu S, de Lencastre H, Tomasz A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J. Bacteriol. 178: 6036-6042 (1996)
  9. Becker LA, Cetin-Mehmet S, Hutkins RW, Bemson AK. Identification of the gene encoding the alternative sigma factor sigma B from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180: 4547-4554 (1998)
  10. Wiedmann M, Arvik TJ, Hurley RL, Boor KJ. General stress transcription factor $O^{-B}$ and its role in acid resistance and virulence of Listeria monocytogenes. J. Bacteriol. 180: 3650-3656 (1998)
  11. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322 (1999) https://doi.org/10.1126/science.284.5418.1318
  12. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49-79 (2000) https://doi.org/10.1146/annurev.micro.54.1.49
  13. Chae MS, Schraft H. Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int. J. Food Microbiol. 62: 103-111 (2000) https://doi.org/10.1016/S0168-1605(00)00406-2
  14. Jeong DK, Frank JF. Growth of Listeria monocytogenes at 21oC in biofilms with micre-organisms isolated from meat and dairy processing environments. Lebensm.-Wiss. u.-Technol. 27: 415-424 (1994) https://doi.org/10.1006/fstl.1994.1087
  15. Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Alternative transcription factor $\sigma^B$ is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824-6826 (2000) https://doi.org/10.1128/JB.182.23.6824-6826.2000
  16. Lindsay D, Holy AV. Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol. 14: 383-390 (1997) https://doi.org/10.1006/fmic.1997.0102
  17. Mafu AA, Roy D, Goulet J, Magny P. Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J. Food Prot. 53: 742-746 (1990)
  18. Ko R, Smith LT, Smith GM. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 176: 426-431 (1994)