Effects of Alisma canaliculatum Butanol Fraction with Vitamin E on Glycogen, Lipid Levels, and Lipid Peroxidation in Streptozotocin-induced Diabetic Rats

택사 butanol 분획물과 vitamin E의 투여가 streptozotocin 유발 당뇨 흰쥐의 글리코겐, 지질함량 및 지질과산화에 미치는 영향

  • Han, Hye-Kyoung (Department of Food and Nutrition, College of Natural Sciences, Duksung Women's University)
  • 한혜경 (덕성여자대학교 자연과학대학 식품영양학과)
  • Published : 2004.06.30

Abstract

This study was designed to investigate the effect of a butanol (BuOH) fraction of Alisma canaliculatum (Ac) with/without vitamin E (VE) on glycogen, lipid levels and oxidative stress in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were divided into 5 groups: normal, STZ-control, and 3 diabetic experimental groups. Diabetes was induced by injection of STZ (45 mg) into the tail vein. The BuOH fraction of Ac and VE were administrated orally in rats for 21 days: Ac group (400 mg), Ac-VE group (Ac 400 mg & vitamin E 10 mg) and VE group (10 mg). Liver and muscle glycogen levels decrease in STZ-control group versus normal group and these alteration in glycogen levels were prevented Ac-VE group and VE group. Oral administration of Ac or VE resulted in reduction in liver cholesterol. Liver triglycerides were significantly higher in the VE group than in STZ-control group. Liver malondialdehyde (MDA) was increase in STZ-control group compared to normal group, but that of Ac group and Ac-VE group were similar to normal group. Meanwhile MDA in kidney, lung and pancreas were not significantly different among five groups. Ac-VE group increase lung protein that were significantly higher than diabetic control rats. These results suggest that the VE could increase glycogen and triglyceride levels and BuOH fraction of Ac decrease MDA of liver in the diabetic rats. The use of Ac together with VE did not show better control hyperglycemia-induced oxidative stress.

본 실험은 당뇨병 치료에 대한 연구로 우리나라에서 민간요법에 이용되어 오던 식물인 택사에서 혈당강하에 영향을 미친 butanol분획물과 항산화영양소인 비타민 E를 21일간 경구투여 하여 글리코겐, 지질함량 및 지질과산화에 미치는 영향을 검토하였다. 간, 신장 및 폐의 상대적 무게는 당뇨대조군이 정상군에 비해 유의적으로 높은 경향을 보였고 특히 신장은 현저한 비대현상을 나타냈다. 간장 글리코겐 함량은 당뇨대조군에 비해 Ac-VE투여군과 VE투여군에서, 근육의 글리코겐 함량은 VE투여군에서 유의적으로 증가하였다. 간장 콜레스테롤 함량은 당뇨대조군에 비해 Ac투여군과 VE투여군에서 감소하였다. 간장 중성지방 함량은 정상군에 비해 당뇨대조군에서 유의적으로 감소하였으며 당뇨대조군에 비해 모든 당뇨실험군에서 증가하였으며 VE투여군에서 유의적으로 증가하였다. 간장의 MDA 함량은 당뇨대조군에 비해 당뇨실험관에서 감소하였으며 Ac투여군과 Ac-VE투여군에서는 유의적으로 감소하였다. 폐의 경우는 당뇨대조군에 비해 모든 당뇨실험군에서 감소하였으나 유의적인 차이는 없었다. 이상의 결과 streptozotocin으로 당뇨를 유발시킨 흰쥐에서 택사의 투여가 간의 산화적 손상을 감소시키므로써 산화적 스트레스 억제효과를 관찰할 수 있었으며, 비타민 E의 투여가 간장 및 근육의 글리코겐 함량을 증가시키고 중성지방함량을 증가시켰다. 택사와 VE의 상관관계는 보이지 않았고 각자 독자적인 기전에 의해서 발생하는 것으로 사료된다. 그리므로 앞으로 각 조직의 지방대사 및 약물대사효소활성에 비치는 영향에 대해 더욱 연구되어져야 할 것이다.

Keywords

References

  1. Kim I, Choi CS, Kim SW. Prevalence of diabetes mellitus an impaired glucose tolerance in Korean adults living in Jungup district, South Korea. J. Korean Diabetes Assoc. 22: 363-371 (1998)
  2. Abrams JJ, Binsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in non-ketoic mellitus. Diabetes 31: 903-910 (1982) https://doi.org/10.2337/diabetes.31.10.903
  3. Brown WV. Lipoprotein disorders in diabetes mellitus. Med. Clin. N. Am. 78: 143-161 (1995)
  4. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the framingham study. Diabetes Care 2: 120-126 (1979) https://doi.org/10.2337/diacare.2.2.120
  5. Hammers HD, Martin S, Fedesrlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc. Nat. Acad. Sci. USA 88: 11555-11558 (1991) https://doi.org/10.1073/pnas.88.24.11555
  6. Reaven P. Dietary and pharmacologic regimens to reduce lipid peroxidation in non-insulin-dependent diabetes mellitus. Am. J. Clin. Nutr. 62: 1483S-1489S (1995)
  7. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405-412 (1991) https://doi.org/10.2337/diabetes.40.4.405
  8. Lones TJ. Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes. Diabetes Med. 8: 411-419 (1991) https://doi.org/10.1111/j.1464-5491.1991.tb01624.x
  9. Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadis J, Tritschler H, Rosen P, Halliwell B, Betteridge DJ. Relationship between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40: 647-653 (1997) https://doi.org/10.1007/s001250050729
  10. Wefers H, Sies H. The protection by ascorbate and gluthatione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 174: 353-357 (1988) https://doi.org/10.1111/j.1432-1033.1988.tb14105.x
  11. Halevy O, Sklan D. Inhibition of arachidonic acid oxidation by betacarotene, retinol and alpha tocopherol. Biochem. Biophy. Acta 918: 304-307 (1987) https://doi.org/10.1016/0005-2760(87)90235-9
  12. Packer L. Interactions among antioxidants in health and disease: vitamin E and its redox cycle. Proc. Soc. Exp. Biol. Med. 200: 271-276 (1992) https://doi.org/10.3181/00379727-200-43433
  13. Goldfarb AH, Mcintoxh MK, Boyer BT, Fatouros J. Vitamin E effects on indexes of lipid peroxidation in muscle from dehydroepi and rosterone-treated and exercise rats. J. Appl. Physiol. 76: 1630-1635 (1994)
  14. Kanter MM, Nolte LA, Holleszy JO. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol. 74: 965-969 (1993)
  15. Halliwell B. Free radicals and antioxidant: A personal view. Nut. Rev. 52: 253-265 (1994) https://doi.org/10.1111/j.1753-4887.1994.tb01453.x
  16. Kashiwagi A, Asahina T, Nishio Y, Ikebuchi M, Tanaka Y, Kikkawa R, Shigeta Y. Glycation, oxidative stress and scavenger activity: Glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes 45 (Suppl. 3): S84-S86 (1996)
  17. Ramesh B. Dietary management of pancreatic beta-cell homeostasis and control of diabetes. Med. Hypoth. 46: 357-361 (1996) https://doi.org/10.1016/S0306-9877(96)90187-5
  18. Haffner SM. Clinical relevance of the oxidative stress concept. Metabolism 49: 30-34 (2000) https://doi.org/10.1016/S0026-0495(00)80083-9
  19. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complication: a new perspective on an old paradigm. Diabetes 48: 1-9 (1999) https://doi.org/10.2337/diabetes.48.1.1
  20. Huh J. The Handbook of Oriental Medicine. Namsandang, Seoul, Korea (1994)
  21. Toh CA. Antimicrobial and antifungal studies on Alisma rhizoma. Korean J. Pharmacogn. 27: 378-382 (1996)
  22. Chang IM, Kim YS, Yun HS, Kim SO. Liver-protective activities of alisol compounds against CCl4 intoxication. Korean J. Pharmacogn. 13: 112-115 (1982)
  23. Eun JS, Hong JS, So JN. Effects of the extracts from Hoelen alba, Alismatis Rhizoma and Atractylodes Rhizoma on proliferation and differentiation of 3T3-L1 cell. Korean J. Pharmacogn. 24: 131-139 (1993)
  24. Yoshijiro N. Terpenoids of Alisma orientale Rhizoma and the crude drug Alismatis rhizoma. Phytochemistry 36: 119-127, 1994 https://doi.org/10.1016/S0031-9422(00)97024-9
  25. Lim SJ, Kim SH. The effect of each fraction of methanol extraction of Alisma canaliculatum on blood glucose levels and lipid metabolism in streptozotocin induced diabetic rats. Korean J. Nutr. 34: 619-625 (2001)
  26. Lim SJ, Park JE. Effects of butanol fraction of Alisma canaliculatum with vitamin E on plasma levels of glucose and lipid in streptozotocin-induced diabetic rats. Korean J. Food Sci. Technol. 35: 713-719 (2003)
  27. Reeves PG. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 127: 838S-841S (1997)
  28. Hassid WZ, Abraham X. Chemical procedures for analysis of polysaccharides. pp. 34-50. In: Methods in Enzymology 3. Academic Press, Detroit, MI, USA (1957)
  29. Richimond W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 20: 1350-1356 (1973)
  30. Giegel JL, Ham SB, Clema W. Serum triglyceride determined colorimetry with an enzyme that produces hydrogen peroxide. J. Clin. Chem. 21: 1575-1581 (1975)
  31. Lowry OH, Rosebrough NJ, Farr AJ, Randall, R.R. Protein measurement with the foline phenol reagent. J. Biol. Chem. 193: 265-273 (1951)
  32. Uchiyama M, Mihara M. Determination of malondialdehyde precursor in tissue by thiobarbituric acid test. Anal. Biochem. 86: 271-278 (1978) https://doi.org/10.1016/0003-2697(78)90342-1
  33. Rao M, Blane K, Wonnenberg M. PC-STAT. Univ. Georgia, Athens, GA, USA (1985)
  34. Vats V, Yadav SP, Grover JK. Effect of T. foenumgraecum on glycogen content of tissue and the key enzymes of carbohydrate metabolism. J. Ethnopharmacol. 2853: 1-6 (2003)
  35. Cho SY, Park JY, Park EM, Choi MS, Lee MK, Jeon SM, Jang MK, Kim MJ, Park YB. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clinica Chimica Acta 317: 109-117 (2002) https://doi.org/10.1016/S0009-8981(01)00762-8
  36. Stansbie D, Brownsey RW, Crettaz M, Denton RM. Acute effects in vivo of anti-insulin serum on rates of fatty acid synthesis and activities of acetyl CoA carboxylase and pyruvate dehydrgenase in liver and epididymal adipose tissue of fed rats. Biochem. J. 160: 413 (1976)
  37. Kwag OG, Yang JA, Rhee SJ. Effects of vitamin E on the antioxidative defense system of kidney in streptozotocin-induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 28: 654-662 (1999)
  38. Flyvbjerg AT, Ussing O, Naeraa R, Arvaillou R, Inberti C. Kidney tissue somatomedin-C and initial renal growth in diabetic rats. Diabetologia 31: 310-314 (1988)
  39. Mogensen CE, Anderson MJF. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706-712 (1973)
  40. Hong SK. Somatomedin-C/ICF-ꠑ and rapidly renal swelling on kidney in diabetic rats. MS thesis, Seoul National University, Seoul, Korea (1989)
  41. Lim SJ, Kim YS. The effect of butanol fraction of Polygonatum odoratum with vitamin E on blood glucose levels and lipid peroxidations in streptozotocin-induced diabetic rats. Korean J. Nutr. 31: 1385-1393 (1998)
  42. Singh SN, Vats P, Suri S, Shyam R, Kumria MML, Ranganathan S, Sridharan K. Effect of an antidiabetic extract Catharanthus foseus on enzymic activities in streptozotocin induced diabetic rats. J. Ethnopharmacol. 76: 269-277 (2001) https://doi.org/10.1016/S0378-8741(01)00254-9
  43. Sabu MC, Smitha K, Ramadasan K. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109-116 (2002) https://doi.org/10.1016/S0378-8741(02)00217-9
  44. Chakrabarti S, Biswas TK, Rokeya B, Ali L, Mosihuzzaman M, Nahar N, Azad Khan AK, Mukherjee B. Advanced studies on the hypoglycemic effect of Caesalpinia bonducella F. in type 1 and 2 diabetes in Long Evans rats. J. Ethnopharmacol. 84: 41-46 (2003) https://doi.org/10.1016/S0378-8741(02)00262-3
  45. Lee JS, Lee GS, Shin HK. Effects of chicory extract on the serum glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J. Nutr. 30: 781-788 (1977)
  46. Aheme I, Lakhani MS, Gillett M, John A, Rasa H. Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocininduced diabetic rats. Diabetes Res. Clin. Pract. 51: 155-161 (2001) https://doi.org/10.1016/S0168-8227(00)00224-2
  47. Koh JB, Choi MA. Effect of tea fungus/kombucha beverage on lipid metabolism in streptozotocin-induced diabetic male rats. J. Korean Soc. Food Sci. Nutr. 28: 613-618 (1999)
  48. Yang JA, Kim SO, Choi JH, Rhee SJ, Chang HW. Activities of phospholipase A2, cyclooxygenase and thromboxane, and syntheses pyrostacyclin in streptozotocin induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 27: 175-181 (1998)
  49. Asyama K, English D, Slonim AE, Buer IM. Chemiluminescence as an index of drug induced free radical production in pancreatic islets. Diabetes 33: 160-163 (1984) https://doi.org/10.2337/diabetes.33.2.160
  50. Takasu N, Komiya I, Asasa T, Nagasawa Y, Yamada T. Streptozotocin and alloxan induced $H_2O_2$ generation and DNA fragmentation in pancreatic islets. Diabetes 40: 1141-1145 (1991) https://doi.org/10.2337/diabetes.40.9.1141
  51. Rhee SJ, Choe WK, Ha TY. The effect of vitamin E on the antioxidative defense mechanism in streptozotocin-induced diabetic rats. J. Jpn. Soc. Nutr. Food Sci. 486: 451-457 (1995)
  52. Matkovics B, Varga SI, Szabo L, Witas H. The effect of diabetes on activities of the peroxide metabolizing enzyme. Horm. Metab. Res. 14: 77-79 (1982) https://doi.org/10.1055/s-2007-1018928
  53. Parinandi NL, Thompson EDW, Schmid HOH. Diabetes heart and kidney exhibit increase resistance to lipid peroxidation. Biochem. Biophys. Acta 1047: 63-69 (1990) https://doi.org/10.1016/0005-2760(90)90261-U
  54. Panganamala RV, Cornwell DG. The effect of vitamin E on arachidonic acid metabolism. Ann. NY Acad. Sci. 393: 376-393 (1982) https://doi.org/10.1111/j.1749-6632.1982.tb31277.x
  55. Higuchi Y. Lipid peroxides and $\alpha$-tocopherol in rat streptozotocin- induced diabetes mellitus. Acta Med. Okayama 36: 165-175 (1982)
  56. Tatsuki R, Satoh K, Yamamoto A. Lipid peroxidation in the pancreas and other organs in streptozotocin diabetic rats. Jpn. J. Pharmacol. 75: 267-273 (1997) https://doi.org/10.1254/jjp.75.267
  57. Seo SY, Kim HR. Effects of Aralia canescens and Phellodendron amrense extracts on streptozotocin induced diabetic ICR mice. J. Korean Soc. Food Sci. Nutr. 26: 689-696 (1997)
  58. Koh JB, Kim JY. Effect of Okcheonsan on blood glucose, lipid, and protein levels in streptozotocin-induced diabetic female rats. J. Korean Soc. Food Sci. Nutr. 31: 284-289 (2002) https://doi.org/10.3746/jkfn.2002.31.2.284
  59. Dhananjay G, Jayadev R, Jaya PR, Najma ZB. Change in the lipid profile, lipogenic and related enzymes in the livers of experimental diabetic rats: effect of insulin and vanadate. Diabetes Res. Clin. Practice 46: 1-7 (1999) https://doi.org/10.1016/S0168-8227(99)00067-4