Hypoglycemic Effects of Crude Extracts of Moutan Radicis Cortex

목단피 추출물의 혈당 강하 효과

  • Published : 2004.06.30

Abstract

Hypoglycemie effect of Moutan Radicis Cortex (MRC) extract contained in Yukmijihuang-hwan was determined by investigating insulin-sensitizing and ${\alpha}-glucoamylase-suppressing$ actions. MRC was extracted with 70% ethanol, fractionated by XAD-4 column chromatography with mixture solvent of methanol and water, and utilized for hypoglycemic effect assay. Significant insulin sensitizing activities of MRC extracts were observed in 3T3-L1 adipocytes, giving MRC extracts with 1 ng/mL insulin reach glucose uptake level increased by 50 ng/mL of insulin alone. MRC methanol extracts of 20, 40, 60, and 80% suppressed ${\alpha}-glucoamylase$ activity in vitro. Peak serum glucose levels and area under curve were lower in Sprague Dawley male rats treated with MRC ethanol extract than those treated with cellulose in oral glucose tolerance test using 2 g dextrin/kg body weight. These data suggest MRC extracts contain effective insulin -sensitizing and ${\alpha}-glucoamylase-suppressing$ compounds for hypoglycemic activity.

한의학에서 당뇨병(소갈) 처방으로 사용되는 육미지황환의 성분 중의 하나인 목단피의 혈당 강하 효과를 조사하기 위해서 목단피를 70% 에탄올로 추출한 후 XAD-4 column으로 분획하여 인슐린 민감성을 향상시키고 ${\alpha}-glucoamylase$ 활성을 억제하는 분획층이 있는지를 조사하였다. 3T3-L1 지방세포에서 소량의 인슐린(1 ng/mL)의 존재하에서 20, 40, 60% 메탄올 분획층은 인슐린 작용을 증가시켜 포도당 흡수를 효과적으로 증가시키는 인슐린 민감성 성분이 함유되어 있었다. 또한 20, 40, 60, 80% 메탄올 분획층에는 ${\alpha}-glucoamylase$의 활성을 억제하여 말토즈와 dextrin의 ${\alpha}-glucoamylase$ 결합이 분해되는 것을 억제시키는 성분이 함유되어 있었다. In vivo에서 실험동물에게 목단피의 70% 메탄올 추출물을 투여한 후 말토즈와 dextrin로 경구부하 검사를 하였을 때 dextrin만이 투여하였을 때에 대조군인 셀룰로즈에 비해 혈당의 상승이 현저하게 낮았고 이것은 dextrin의 소화 흡수의 감소에 의한 것으로 추정된다. 앞으로 효과가 있는 분획층을 더 분리하여 인슐린 민감성 물질과 ${\alpha}-glucoamylase$의 활성을 억제시키는 유효성분을 분리하고자 한다.

Keywords

References

  1. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-353 (1992) https://doi.org/10.2337/diacare.15.3.318
  2. Kahn SE, Prigeon RL, McCulloch DK. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42: 1663-1672 (1993) https://doi.org/10.2337/diabetes.42.11.1663
  3. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26: 2370-2377 (2003) https://doi.org/10.2337/diacare.26.8.2370
  4. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Gori M, Coppini A, Moghetti P. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism 52: 862-867 (2003) https://doi.org/10.1016/S0026-0495(03)00101-X
  5. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis- Mouren G, Desseaux V. On the mechanism of alpha-amylase. Eur. J. Biochem. 270: 3871-3879 (2003) https://doi.org/10.1046/j.1432-1033.2003.03733.x
  6. Goldstein BJ, Pans M, Rubin CJ. Multi-center, randomized, double-masked, parallel-group assessment of simultaneous glipizide/ metformin as second-line pharmacologic treatment for patients with type 2 diabetes mellitus that is inadequately controlled by a sulfonylurea. Clin. Ther. 25: 890-903 (2003) https://doi.org/10.1016/S0149-2918(03)80112-1
  7. Hae J. DongEuBoGam. Namsandang, Seoul, Korea (1990)
  8. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T. Dual action of isoprenols from herbal medicines on both PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett. 514: 315-322 (2002) https://doi.org/10.1016/S0014-5793(02)02390-6
  9. Kamei R, Kadokura M, Kitagawa Y, Hazeki O, Oikawa S. 2'-benzyloxychalcone derivatives stimulate glucose uptake in 3T3-L1 adipocytes. Life Sci. 73: 2091-2099 (2003) https://doi.org/10.1016/S0024-3205(03)00563-0
  10. Hirai A, Terano T, Hamazaki T, Sajiki J, Saito H, Tahara K, Tamura Y, Kumagai A. Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb. Res. 31: 29-40 (1983) https://doi.org/10.1016/0049-3848(83)90005-1
  11. Ishida H, Takamatsu M, Tsuji K, Kosuge T. Studies on active substances in herbs used for oketsu ("stagnant blood") in Chinese medicine. V. On the anticoagulative principle in moutan cortex. Chem. Pharm. Bull. (Tokyo) 35: 846-848 (1987) https://doi.org/10.1248/cpb.35.846
  12. Coniff R, Krol A. Acarbose: a review of US clinical experience. Clin. Ther. 19: 16-26 (1997) https://doi.org/10.1016/S0149-2918(97)80069-0
  13. Scheen AJ. Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials. Diabetes Metab. 24: 311-320 (1998)
  14. Clissold SP, Edwards C. Acarbose: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 35: 214-243 (1988)
  15. Hayakawa T, Kondo T, Okumura N, Nagai K, Shibata T, Kitagawa M. Enteroglucagon release in disaccharide malabsorption induced by intestinal alpha2 glucosidase inhibition. Am. J. Gastroenterol. 84: 523-526 (1989)
  16. Herrmann BL, Schatz H, Pfeiffer A. Continuous blood glucose monitoring: the acute effect of acarbose on blood glucose variations. Med. Klin. 93: 651-655 (1998) https://doi.org/10.1007/BF03044876
  17. Carrascosa JM, Molero JC, Fermin Y, Martinez C, Andres A, Satrustegui J. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes. Metab. 3: 240-248 (2001) https://doi.org/10.1046/j.1463-1326.2001.00102.x