Effect of Defatted Sesame and Perilla Methanol Extracts on Cognitive Function and Antioxidant Activity in SAMP8 Mice

노화촉진마우스에 있어서 참깨박 및 들깨박의 메탄올 추출물이 인지기능 및 항산화능에 미치는 영향

  • Um, Min-Young (Food Function Research Division, Korea Food Research Institute) ;
  • Choi, Won-Hee (Food Function Research Division, Korea Food Research Institute) ;
  • An, Ji-Yun (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Sung-Ran (Food Function Research Division, Korea Food Research Institute) ;
  • Ha, Tae-Youl (Food Function Research Division, Korea Food Research Institute)
  • 엄민영 (한국식품개발연구원 식품기능연구본부) ;
  • 최원희 (한국식품개발연구원 식품기능연구본부) ;
  • 안지윤 (한국식품개발연구원 식품기능연구본부) ;
  • 김성란 (한국식품개발연구원 식품기능연구본부) ;
  • 하태열 (한국식품개발연구원 식품기능연구본부)
  • Published : 2004.08.31

Abstract

Effects of defatted sesame and perilla methanol extracts on cognitive function and antioxidant activity of learning- and memory-impaired animal model SAMP8 mice. Animals were divided into 4 groups and fed with diets containing 0.3%(w/w) defatted sesame (S) or defatted perilla methanol extracts (P) for 12 weeks. Step through latency of SAMP8 control group was significantly higher than that of SAM R1 normal group, whereas significantly increased in S and P groups compared with SAMP8 control on passive avoidance test (p<0.001). Acetylcholinesterase activity of brain in SAMP8 increased compared with SAMR1 but no difference between SAMP8 control group and sample-treated group. Brain TBARS contents of SAMP8 control significantly increased compared with SAMR1 and were lowered significantly by supplementation of defatted sesame and perilla methanol extracts. Defatted sesame and perilla methanol extracts attenuated increased brain superoxide dismutase and glutathione peroxidase activities in SAMP8. These results suggest defatted sesame and perilla methanol extracts could attenuate cognitive deficits induced by aging possibly through activation of antioxidant activity of defatted sesame and perilla methanol extracts.

본 연구는 탈지 참깨 및 탈지 들깨의 메탄올추출물이 기억과 학습능력 감퇴의 특성을 가지고 있는 노화촉진마우스 SAMP8의 인지기능 및 항산화체계에 미치는 영향을 검토하기 위하여 각 추출물 0.3% 첨가 식이로 3개월간 섭취시킨 후 passive avoidance test로 인지기능변화를 측정하였고, 뇌중 acetylcholinesterase 활성, 지질과산화물 및 항산화효소활성을 분석하였다. 그 결과, 탈지 참깨 및 탈지 들깨의 메탄올 추출물이 노화촉진으로 감소한 step through latency가 증가하였으나, 혈액과 뇌조직의 anetylcholinesterase 활성에는 영향을 미치지 못하였다. 체내 지질 과산화물은 SAMP8 대조군에서 유의하게 증가하였으나, 탈지 참깨와 탈지 들깨의 메탄올 추출물을 첨가함으로써 유의하게 감소하였으며, SOD와 GPx의 활성은 증가하였다. 따라서 탈지 참깨와 탈지 들깨의 메탄올 추출물은 노화촉진마우스의 인지 기능을 개선시키며, 이는 cholinergic 신경전달체계의 변화보다는 체내 지질 과산화물 억제 및 항산화효소 활성을 통한 메카니즘으로 생각된다.

Keywords

References

  1. Takeda T, Hosokawa M, Takeshita S, Irino M, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T. A new murine model of accelerated senescence. Mech. Aging Dev. 17: 183-194 (1981) https://doi.org/10.1016/0047-6374(81)90084-1
  2. Hosokawa M, Kasai R, Higuchi R, Takeshita S, Shimizu K, Hamamoto H, Hanma A, Irino M, Toda K, Matsumura A. Grading score system: a method for evaluation of the degree of senescence in senescence accelerated mouse (SAM). Mech. Aging Dev. 26: 91-102 (1981)
  3. Cho KH, Yang SD, Yang KS, Yoo JK, Lee PS, Song CW, Han SS. The grading scores of aging, productive performance, hematology, serum biochemistry and urine biochemistry of senescenceaccelaterated mouse (SAM) with age in KRICT colony. Korean J. Lab. Anim. Sci. 15: 315-324 (1999)
  4. Ohta A, Hirano T, Yagi H, Tanaka S, Hosokawa M, Takeda T. Behavioral characteristics of the SAM-P/8 strain in sidman active avoidance task. Brain Res. 498: 195-198 (1989) https://doi.org/10.1016/0006-8993(89)90421-6
  5. Okuma Y, Murayama T, Tha KK, Yamada C, Hosokawa M, Ishikawa A, Watanabe R, Maekawa M, Nomura Y. Learning deficiency and alterations in acetylcholine receptors and protein kinase C in the brain of senescence-accelerated mouse. Mech. Aging Dev. 114: 191-199 (2000) https://doi.org/10.1016/S0047-6374(00)00103-2
  6. Kim JH, Ryu JD, Lee HG, Park JH, Moon GS, Choi HS, Song YO. Effect of Kimchi on production of free radicals and anti-oxidative enzyme activities in the brain of SAM. J. Korean Soc. Food Sci. Nutr. 31(1): 109-116 (2002) https://doi.org/10.3746/jkfn.2002.31.1.109
  7. Harman D, The aging process. Proc. Natl. Acad. Sci. USA 78: 7124-7128 (1981) https://doi.org/10.1073/pnas.78.11.7124
  8. Matsugo S, Kitagawa T, Minami S, Esashi Y, Oomura Y, Tokumaru S, Kojo S, Matsushima K, Sasaki K. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci. Lett. 278: 105-108 (2000) https://doi.org/10.1016/S0304-3940(99)00907-6
  9. Dogru-Abbasoglu S, Tamer-Toptani S, Ugunal B, Kocak-Toker N, Aykac-Toker G, Uysal M. Lipid peroxidation and antioxidant enzymes in livers and brains of aged rats. Mech. Aging Dev. 98: 177-180 (1997) https://doi.org/10.1016/S0047-6374(97)00082-1
  10. Namiki, M. The chemistry and physiological functions of sesame. Food Rev. Internet. 11: 281-329 (1995) https://doi.org/10.1080/87559129509541043
  11. Kang MH, Min KS, Ryu SN, Bang JK, Lee BH. Effects of defatted sesame flour on oxidative stress induced by ethanol-feeding in rats. J. Korean Soc. Food Sci. Nutr. 25: 907-911 (1999)
  12. Kang MH, Naito M, Sakai K, Uchida K, Osawa T. Mode of action of sesame lignans in protecting low-density lipoprotein against oxidative damage in vitro. Life Sci. 66: 161-71 (2000) https://doi.org/10.1016/S0024-3205(99)00574-3
  13. Lee KY. Antioxidant effects of phenolic compounds isolated from defatted perilla seed flour. Korean J. Food Sci. Technol. 25: 9-14 (1993)
  14. Kang HJ, Kim JS. Physiolosical activity of perilla. Food Ind. Nutr. 3: 65-72 (1998)
  15. Ellman GL, Courtney KD, Andres VJ, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  16. Ohkawa H. Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 35-41 (1979)
  17. Aebi H. Catalase. Vol. 2, pp. 673-679. In: Methods of Enzymatic Analysis. Vergmeyer MU (ed). Academic Press, NY, USA (1974)
  18. Marklund S, Marklund CT. Involvement of superoxide anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-473 (1974) https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  19. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Comm. 71: 952-961 (1976) https://doi.org/10.1016/0006-291X(76)90747-6
  20. Lowry OH. Rosebrough, NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265-275 (1993)
  21. Umezawa M, Ohta A, Tojo H, Yagi H, Hosokawa M, Takeda T. Dietary $\alpha$-linolenate/linoleate balance influences learning and memory in the senescence-accelerated mouse (SAM). Brain Res. 669: 225-233 (1995) https://doi.org/10.1016/0006-8993(94)01250-L
  22. Ahn HS, Kang SA, Lee IH. Effects of vitamin E and vitamin C supplementation on the decrease in cognitive function induced by scopolamin. Korean J Nutr. 32: 239-247 (1999)
  23. Suganuma H, Hirano T, Kaburagi S, Hayakawa K, Inakuma T. Ameliorative effects of dietary carotenoids on memory deficits in senescence-accelerated mice (SAMP8). Int. Cong. Series 1260: 129-135 (2004) https://doi.org/10.1016/S0531-5131(03)01601-7
  24. Coyle JT, Price DL., DeLong MR. Alzheimer's disease: a disorder of cholinergeric innervation. Science 219: 1184-1190 (1983) https://doi.org/10.1126/science.6338589
  25. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, Frey KA, Kilbourn MR. In vivo mapping of cerebral acetylchilinesterase activity in aging and Alzheimer's disease. Neurology 52: 691-699 (1999) https://doi.org/10.1212/WNL.52.4.691
  26. Das A, Dikshit M, Nath C. Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci. 68: 1545-1555 (2001) https://doi.org/10.1016/S0024-3205(01)00950-X
  27. Choi JH, Kim DW, Han YS, Ryu JK, Han SS. Effect of docosahexaenoic acid (DHA) on learning and memory impairment ani-mal model SAMP8-Feeding effect of DHA on neurotransmitters and their metabolites in SAMP8 brain. Korean J. Gerontol. 6: 25-30 (1996)
  28. Choi JH, Kim DW, Choi JS, Han YS, Baek YH. Effect of reed root extract (RRE) on learning and memory impairment animal model SAMP8 strain-Feeding effects of RRE on nuerotransmitters and their metabolites in SAMP8 brain. Korean J. Gerontol. 7: 29-36 (1997)
  29. Yobimoto K, Matsumoto K, Huong N, Kasai R, Yamasaki K, Watanabe H. Suppressive effects of vietnamese ginseng saponin and major component majonoside-R2 on psychological stressinduced enhancement of lipid peroxidation in the mouse. Phamacol. Biochem. Behavior 66: 661-665 (2000) https://doi.org/10.1016/S0091-3057(00)00257-4
  30. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem. Pharmacol. 57: 199-208 (1999) https://doi.org/10.1016/S0006-2952(98)00296-2
  31. Kurokawa T, Asada S, Nishitani S, Hazeki O. Age-related changes in manganese superoxide dismutase activity in cerebral of senescence-accelerated prone and resistant mouse. Neurosci. Lett. 298: 135-138 (2001) https://doi.org/10.1016/S0304-3940(00)01755-9
  32. Alepr G, Girgin FK, Ozgonul M, Mentes G, Ersoz B. MAO inhibitors and oxidant stress in aging brain tissue. Eur. Neuropsychopharmacol. 9: 247-252 (1999)
  33. Chio JH, Kim DW, Kim KS, Kim CM, Baek YH. Effect of ree root extract (RRE) on learning and memory impairment animal model SAMP8-Feeding effects of RRE on oxyzen radicals and their scavenger enzymes of SAMP8 brain. Korean J. Gerontol. 7: 23-28 (1997)
  34. Kang MH, Naito M, Tsujihara N, Osawa T. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J. Nutr. 128: 1018-1022 (1998) https://doi.org/10.1093/jn/128.6.1018