Rheological Properties of the Wheat Flour Dough with Olive Oil

올리브유를 첨가한 빵 반죽의 리올로지 특성

  • Lim, Sun-Heui (Chonggak 21C Baking Professional Academy) ;
  • Kim, Seok-Young (Department of Baking Technology, Korea Tourism College) ;
  • Lee, No-Woon (Chonggak 21C Baking Professional Academy) ;
  • Lee, Chi-Ho (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University)
  • 임선희 (종각 21세기 제과.제빵학원) ;
  • 김석영 (한국관광대학 제과제빵과) ;
  • 이노운 (종각 21세기 제과.제빵학원) ;
  • 이치호 (건국대학교 축산식품생물공학과) ;
  • 이시경 (건국대학교 응용생물화학과)
  • Published : 2004.10.31

Abstract

Effects of olive oil on rheological properties of wheat flour dough were investigated through farinograph, amylograph, and extensograph, and by measuring wheat flour dough fermentation volume. Farinogram showed development time, stability, elasticity, and valorimeter value of olive oil-added wheat flour decreased, whereas water absorption and stability were similar to control (shortening 4%). Gelatinization temperature and maximum viscosity of wheat flour dough with olive oil decreased more than those of control as revealed by amylogram. Extensogram showed wheat flour area increased, whereas dough volume decreased in olive oil-added wheat flour dough.

제빵에 주요 원료인 쇼트닝 대신 최근 기능성 식품으로 널리 알려지고 있는 올리브유를 대체 원료로 사용하여 건강에 좋은 제품을 제조하기 위해 그 첨가 비율을 달리 하면서 제빵 반죽의 물리적 특성인 파리노그램, 아밀로그램 및 익스텐소그램과 제빵 품질에 영향을 미치는 반죽의 발효 팽창력을 조사하였다. 파리노그램에서 올리브유 4%와 6%를 첨가한 반죽은 대조구(쇼트닝 4%)와 비교하여 발전 시간, 탄력도 및 강력도는 감소한 반면에 안정도와 흡수율은 유사하였다. 아밀로그램에서 최고 점도는 감소하였으나, 호화개시온도와 최고점도시온도는 유사하였다. 익스텐소그램에서 면적은 발효시간 45분에서 올리브유 6%를 첨가하였을 때는 대조구(쇼트닝 4%)와 비교하여 증가하였으나 다른 시험구는 유사하였다. 반죽의 발효 팽창력 특성은 올리브유 4%를 첨가한 경우에는 대조구와 비교하여 낮은 값을 나타내었으나, 표준 편차 이내로 유사하였다. 올리브유 6%는 대조구보다 낮은 팽창력을 나타내었으며, 유지를 첨가하지 않은 반죽과 비교해서 팽창력이 높게 나타났다.

Keywords

References

  1. The Korean Society of Food and Nutrition. Dictionary of Food and Nutrition. Korea Dictionary Research Publishing, Seoul, Korea. pp. 745-746 (1998)
  2. El-Agaimy MA, Neff WE, El-Sayed M, Awatif II. Effect of saline irrigation water on olive oil composition. J. Am. Oil Chem. Soc. 71: 1287-1289 (1994) https://doi.org/10.1007/BF02540553
  3. Triebold HO, Aurand LW. Food Composition and Analysis. D. Van Nostrand Co. Inc., New York, NY, USA. pp. 111-119 (1963)
  4. Shahidi F, Wanasumdara PD. Phenolic antioxidants. Rev. Food Sci. Nutr. 32: 67-103 (1992) https://doi.org/10.1080/10408399209527581
  5. Cinquanta L, Esti M, Di Matteo M. Oxidative stability of virgin olive oils. J. Am. Oil Chem. Soc. 78: 1197-1202 (2001) https://doi.org/10.1007/s11745-001-0413-x
  6. Zamora R, Alba V, Hidalgo FJ. Use of high-resolution 13C nuclear magnetic resonance spectroscopy for the screening of virgin olive oils. J. Am. Oil Chem. Soc. 78: 89-94 (2001) https://doi.org/10.1007/s11746-001-0225-z
  7. Kim KK. Studies on the development of low-fat sausage containing olive oil, corn oil, soybean oil, and sunflower oil. Graduate School of Agricultural Livestock, MS thesis, Konkuk University, Seoul, Korea (2001)
  8. Kim HW, Bae SK, Yi HS. Research on the quality properties of olive oils available in Korea. Korean J. Food Technol. 35: 1064- 1071 (2003)
  9. Zamora R, Navarro JL, Hidalgo FJ. Identification and classification of olive oils by high-resolution $^{13}$C nuclear magnetic resonance. J. Am. Oil Chem. Soc. 71: 361-364 (1994) https://doi.org/10.1007/BF02540514
  10. Giovacchino LD, Solinas M, Miccoli M. Effect of extraction systems on the quality of virgin olive oil. J. Am. Oil Chem. Soc. 71: 1189-1194 (1994) https://doi.org/10.1007/BF02540535
  11. Bianchi G, Tava A, Vlahov G, Pozzi N. Chemical structure of long-chain esters from 'Sansa' olive oil. J. Am. Oil Chem. Soc. 71: 365-369 (1994) https://doi.org/10.1007/BF02540515
  12. AACC. Approved methods of the AACC. Method 10-10b, 22- 10,54-21. American Association of Cereal Chemists. St. Paul, MN, USA (1991)
  13. Fujiyama Y. Method of Experiment. Japan International Baking School, Tokyo, Japan. pp. 3-57 (1981)
  14. SAS Institute, Inc. SAA User's guide. Statistical Analysis Systems Institute, Cary, NC, USA (2000)
  15. Nakae K. Baking Chemistry. Pan News Co., Ltd., Tokyo, Japan pp. 95-107 (1983)
  16. Chung OK, Shogren MD, Pomeranz Y, Finney KF. Defatted and reconstituted wheat flour. II. The effects of $0-12\%$ shortening (flour basis) in bread making. Cereal Chem. 58: 69-73 (1981)
  17. Joo HK, Cho NJ, Park MW, Shin DH. The Ingredients of Baking Science and Technology. Kwangmoonkag Co., Ltd., Seoul, Korea pp. 39-40 (1999)
  18. Chung OK. A three way contribution of wheat flour lipids, shortening and surfactants to bread-making. Korean J. Food Sci. Technol. 13: 74-89 (1981)
  19. Xu A, Chung OK, Ponte JG Jr. Bread crumb amylograph studies. I. Effects of storage time, shortening, flour lipids, and surfactants. Cereal Chem. 69: 495-501 (1992)
  20. Tsen CC. The reaction mechanism of azodicarbonamide in dough. Cereal Chem., 40: 638-646 (1963)
  21. Hoseney RC, Hsu KH, Junge RC. A simple spread test to measure the rheological properties of fermenting dough. Cereal Chem. 56: 141-152 (1979)
  22. Junge RC, Hoseney RC, Varriano-Marston E. Effect of surfactants on air incorporation in dough and the crumb grain of bread. Cereal Chem. 58: 338-342 (1981)
  23. Bell BM, Daniels DGH, Fisher N. Vacuum expansion of mechanically developed doughs at proof temperature: Effect of shortening. Cereal Chem. 58: 182-186 (1981)
  24. Moore WR, Hoseney RC. Influence of shortening and surfactants on retention of carbon dioxide in bread dough. Cereal Chem 63: 67-70 (1986)