Factors Affecting Acrylamide Formation in French Fries

French fries의 아크릴아마이드 생성에 영향을 미치는 인자에 관한 연구

  • Kim, Hye-Young (Department of Food & Nutritional Sciences, Ewha Womans University) ;
  • Park, Jae-Young (Department of Food & Nutritional Sciences, Ewha Womans University) ;
  • Kim, Cheong-Tae (R & D Center, Analysis Team, Nong Shim Co., Ltd.) ;
  • Chung, So-Young (Food Contaminant Division, Center for Food Safety Evaluation, KFDA) ;
  • Sho, You-Sub (Food Contaminant Division, Center for Food Safety Evaluation, KFDA) ;
  • Lee, Jong-Ok (Food Contaminant Division, Center for Food Safety Evaluation, KFDA) ;
  • Oh, Sang-Suk (Department of Food & Nutritional Sciences, Ewha Womans University)
  • 김혜영 (이화여자대학교 식품영양학과) ;
  • 박재영 (이화여자대학교 식품영양학과) ;
  • 김청태 ((주)농심 개발본부 분석팀) ;
  • 정소영 (식품의약품안전청 오염물질과) ;
  • 소유섭 (식품의약품안전청 오염물질과) ;
  • 이종옥 (식품의약품안전청 오염물질과) ;
  • 오상석 (이화여자대학교 식품영양학과)
  • Published : 2004.12.31

Abstract

Effects of frying temperature and time, presoaking in distilled water, various pH buffer solutions, and storage temperature of french fries on acrylamide formation were investigated. Acrylamide concentration in french fries increased as frying temperature and time increased. Presoaking of raw potatoes in distilled water reduced acrylamide formation compared to those without presoaking. Acrylamide formation of fried potatoes after presoaking at $60^{\circ}C$ for 45 min was about 16% of that without presoaking. Presoaking treatment of raw potatoes in various buffer solutions showed acrylamide concentrations of french fries from potatoes presoaked in acidic buffer solutions were lower than those from potatoes presoaked in neutral to alkaline buffer solutions. Acrylamide concentration of potatoes stored at refrigerator temperature was much higher than those stored at room temperature.

가열온도, 가열시간, presoaking 처리, 침지액 pH 처리, 저장 온도의 변화에 따라 아크릴아마이드 함량에 영향을 미치는 것을 확인하였다. 이를 식품생산에 적용하여 식품 내 아크릴아마이드 생성을 줄일 수 있는 방법을 도출할 수 있을 것으로 판단된다. 아크릴아마이드의 저감화는 원료 내 아크릴아마이드 형성가능물질을 줄임으로써 일차적으로 이루어질 수 있다. 본 실험을 통해 냉장보관한 감자의 아크릴아마이드 생성량은 보관기간이 길어질수록 증가하는 것을 확인할 수 있었다. 이는 감자의 환원당과 아미노산이 증가되어 아크릴아마이드 생성량이 증가되는 것으로 사료된다. 일반적으로 후렌치 후라이는 $160-180^{\circ}C$ 온도에서 2-5분간 가열한다. 아크릴아마이드 생성은 가열시간 및 온도에 크게 영향을 받으므로 이를 조절함으로써 식품 내 아크릴아마이드 함량을 줄일 수 있다. 아크릴아마이드는 $160^{\circ}C$ 이상의 고온에서 생성이 급속도록 증가되므로 식품을 조리 시 가열온도를 가능한 낮게 조절하는 방법도 아크릴아마이드 함량을 줄일 수 있을것으로 판단된다. $60^{\circ}C$의 증류수에 45분간 침지하였을 때 아크릴아마이드 생성량이 약 80% 감소되었으며 침지과정은 후렌치 후라이 제조시 제품의 색감을 좋게 하기 위해 제조과정 중 포함되어 있으므로 침지온도와 침지시간을 조절하는 것으로 아크릴아마이드 함량을 낮출 수 있을 것으로 판단된다.

Keywords

References

  1. Yang JS, Lee MY, Park IJ, Kang SK. Occupational health: Simple analytical method for analytical science and technology in the workplace air absorbed by charcoal tube. Anal. Sci. Technol. 11: 139 (1998)
  2. Ahn JS, Castle L. Tests for depolymerization of polyacrylamide as a potential source of acrylamide in heated foods. J. Agric. Food chem. 51: 6715-6718 (2003) https://doi.org/10.1021/jf0302308
  3. Smith EA, Prues SL, Oehme FW. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH. Ecotoxicol. Environ. Saf. 35: 121-135 (1995) https://doi.org/10.1006/eesa.1996.0091
  4. Smith EA, Prues SL, Oehme FW. Environmental degradation of polyacrylamides. 2. Effects of environmental(outdoor) exposure. Ecotoxicol. Environ. Saf. 37: 76-91 (1995)
  5. Friedman M. Chemistry, biochemistry, and safety of acrylamide: A review. J. Agric. Food Chem. 51: 4504-4526 (2003) https://doi.org/10.1021/jf030204+
  6. Tareke E, Rydberg P, Karlsson P, Erikssoon S, T Rnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food Chem. 50: 4998-5006 (2002) https://doi.org/10.1021/jf020302f
  7. Tareke E, Rydberg P, Karlsson P, Erikssoon S, T Rnqvist M. Acrylamide: a cooking carcinogen? Chem. Res. Toxicol. 13: 517- 522 (2000) https://doi.org/10.1021/tx9901938
  8. Rosen J, Hellenas K-E. Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127: 880-882 (2002) https://doi.org/10.1039/b204938d
  9. Becalski A, Benjamin P-YL, Lewis D, Seaman SW. Acrylamide in foods: occurrence, sources, and modeling. J. Agric. Food Chem. 51: 802-808 (2003) https://doi.org/10.1021/jf020889y
  10. Gertz C, Klostermann S. Analysis of acrylamide and mechanism of its formation in deep-fried products. Eur. J. Lipid Sci. Technol. 104: 762-771 (2002) https://doi.org/10.1002/1438-9312(200211)104:11<762::AID-EJLT762>3.0.CO;2-R
  11. Mottram DS, Wedzicha BL, Dodson AT. Acrylamide is formed in the Maillard reaction. Nature 419: 448-449 (2002) https://doi.org/10.1038/419448a
  12. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy AP, Robert M-C, Riediker, S. Acrylamide from Maillard reaction products. Nature 419: 449 (2002) https://doi.org/10.1038/419449a
  13. Barber DS, Hunt JR, Ehrich MF, Lehning EJ, LoPachin RM. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology. 22: 341-353 (2001) https://doi.org/10.1016/S0161-813X(01)00024-9
  14. Food and Drug Administration. FDA draft action plan for acrylamide in food. Available from: http://www.cfsan.fda.gov. Accessed May 3, 2002.
  15. JIFSAN/NCFST. Workshop on Acrylamide in Food. Available from: http://www.jifsan.umd.edu/acrylamide2002.htm. Accessed May 24, 2002.
  16. Vattem DA, Shetty K. Acrylamide in food: a model for mechanism of formation and its reduction. Innov. Food Sci. Emerg. Technol. 4: 331-338 (2003) https://doi.org/10.1016/S1466-8564(03)00033-X
  17. Park JY. Acrylamide Monitoring of Domestic Heat-Treated Food Products. MS thesis, Ewha Womans University, Seoul, Republic of Korea (2003)
  18. Food and Drug Administration. Exploratory data on acrylamide in foods. Available from: http://www.cfsan.fda.gov. Accessed Apr. 3, 2002
  19. Food and Drug Administration. Exploratory data on acrylamide in foods. Available from: http://www.cfsan.fda.gov/~dms/acrydat2.html. Accessed Jun. 1, 2003
  20. SNFA. Acrylamide in food: Acrylamide in foodstuffs, consumption and intake. Available from: http://www.slv.se/engdefault.asp. Accessed Apr. 10, 2002
  21. Konings EJM, Baars AJ, van Klaveren JD, Spanjer MC, Rensen PM, Hiemstra M, van Kooji JA, Peters PWJ. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risks. Food Chem. Toxicol. 41: 1569-1579 (2003) https://doi.org/10.1016/S0278-6915(03)00187-X
  22. Ono H, Chuda Y, Kobayashi H, Yoshida M. Analysis of acrylamide by LC-MS/MS and GC-MS in processed Japanese foods. Food Addit. Contam. 20: 215-220 (2003) https://doi.org/10.1080/0265203021000060887
  23. Brown R. Formation, occurrence and strategies to address acrylamide in food; Food Advisory Committee Meeting Acrylamide. Available from: http://www.cfsan.fda.gov/~dms/acrybrow/sld025. htm. Accessed May 10, 2003
  24. Jung MY, Choi DS, Ju JW. A novel technique for limitation of acrylamide formation in fried and baked corn chip and in french fries. J. Food Sci. 68: 1287-1290 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb09641.x
  25. Amrein TM, Bachmann S, Noti A, Biedermann M., Barbosa MR, Biedermann-Brem S, Grob K, Keiser A, Realini P, Escher F, Amad R. Potential acrylamide formation, sugar and free asparagine in potatoes: A comparison of cultivars and farming systems. J. Agric. Food Chem. 51: 5556-5560 (2003) https://doi.org/10.1021/jf034344v
  26. Brierley ER, Bonner PLR, Cobb AH. Aspects of amino acid metabolism in stored potato tubers (cv. Pentland Dell). Plant Sci. 127: 17-24 (1997) https://doi.org/10.1016/S0168-9452(97)00109-X
  27. Marquez G, Anon MC. Influence of reducing sugars and amino acids in the color development of fried potatoes. J. Food Sci. 51: 157-160 (1986) https://doi.org/10.1111/j.1365-2621.1986.tb10859.x
  28. Nourian F, Ramaswamy HS, Kusnhalappa AC. Kinetics of quality change associated with potatoes stored at different temperatures. Lebensm. -Wiss. Technol. 36: 49-65 (2003) https://doi.org/10.1016/S0023-6438(02)00174-3