Acetylcholinesterase Inhibitory Activity and Protective Effect against Cytotoxicity of Perilla Seed Methanol Extract

들깨 메탄올 추출물의 acetylcholinesterase 억제활성 및 세포독성 보호효과

  • Choi, Won-Hee (Food Function Research Division, Korea Food Research Institute) ;
  • Um, Min-Young (Food Function Research Division, Korea Food Research Institute) ;
  • Ahn, Ji-Yun (Food Function Research Division, Korea Food Research Institute) ;
  • Kim, Sung-Ran (Food Function Research Division, Korea Food Research Institute) ;
  • Kang, Myung-Hwa (Department of Food Science and Nutrition, Hoseo University) ;
  • Ha, Tae-Youl (Food Function Research Division, Korea Food Research Institute)
  • 최원희 (한국식품연구원 식품기능연구본부) ;
  • 엄민영 (한국식품연구원 식품기능연구본부) ;
  • 안지윤 (한국식품연구원 식품기능연구본부) ;
  • 김성란 (한국식품연구원 식품기능연구본부) ;
  • 강명화 (호서대학교 식품영양학과) ;
  • 하태열 (한국식품연구원 식품기능연구본부)
  • Published : 2004.12.31

Abstract

Acetylcholinesterase inhibitory activity and protective effect against cytotoxicity of PC 12 cell induced by beta-amyloid protein and glutamate were examined in perilla seed methanol extract and its solvent fractions. Methanol extract of perilla seed showed dose-dependent acetylcholinesterase inhibitory activity, with n-butanol fraction showing strongest activity. Perilla seed methanol extract also decreased glutamate- and ${\beta}-amyloid$ protein $(A{\beta})-induced$ cytotoxicities of PC 12 cells dose-dependently. Formation of TBARS induced by $FeSO_{4^-}H_2O_2$ in rat brain was significantly reduced by perilla seed methanol extract, with strongest protective activity formation of TBARS shown in n-butanol fraction. Results suggest perilla seed methanol extract may attenuate actylcholinesterase activity and cytotoxicity induced by glutamate and ${\beta}-amyloid$ protein through suppression of oxidative stress.

들깨 메탄올 추출물이 acetylcholinesterase(AChE)의 활성 및 PC 12 cell 세포사멸에 미치는 영향을 검토하였다. AChE에 대한 억제환성은 들깨 메탄을 추출물의 농도가 높을수록 유의적으로 높았으며 추출물의 분획물 중에서는 n-butanol층이 가장 높은 억제율을 나타내었다. L-glutamate 또는 ${\beta}-amyloid$ protein $(A{\beta})$으로 유도된 PC 12 cell에 대한 세포사멸 억제효과도 추출물의 농도가 높을수록 유의적으로 증가하였다. 또한 rat brain에 $FeSO_{4^-}H_2O_2$로 산화적 스트레스를 유발시켜 추출물의 TBARS 생성 억제활성을 조사한 결과 들깨 메탄을 추출물은 농도가 높아질수록 산화적 스트레스에 대한 억제활성이 증가하였으며 분획물 중에서는 n-butanol층에서 가장 높은 억제활성을 나타내었다. 이상의 결과들로 미루어 볼 때 들깨 메탄을 추출물은 AChE 활성을 억제하고 glutamate 또는 $A{\beta}$에 의하여 유도된 PC12 cell의 세포사멸을 억제하며 이러한 효과는 들깨 메탄을 추출물의 항산화력에 기인할 수도 있을 것으로 사료되었다.

Keywords

References

  1. Choi KG. The long-term care and dementia policy in welfare states. Soc. Welfare Policy 17: 55-75 (2003)
  2. Selkoe DJ. Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399: A23-A31 (1999) https://doi.org/10.1038/19866
  3. Tanzi RE, Gaston S, Bush A, Romano D, Pettingell W, Peppercorn J, Paradis M, Gurubhagavatula S, Jenkins B, Wasco W. Genetic-heterogenity of gene defects responsible for familial Alzheimer-disease. Genetica 91: 255-263 (1993) https://doi.org/10.1007/BF01436002
  4. Price DL, Tanzi RE, Borchelt DR, Sisodia SS. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32: 461-493 (1998) https://doi.org/10.1146/annurev.genet.32.1.461
  5. Selkoe DJ. The molecular pathology of Alzheimer's disease. Neuron. 6: 487-498 (1991) https://doi.org/10.1016/0896-6273(91)90052-2
  6. Harada J, Sugimoto M. Activation of caspase-3 in $\beta$-amyloidinduced apoptosis of cultured rat cortical neurons. Brain Res. 842: 311-323 (2000) https://doi.org/10.1016/S0006-8993(99)01808-9
  7. Yan XZ, Qiao JT, Dou Y, Qiao ZD. Beta-amyloid peptide fragment 31-35 induces apoptosis in cultured cortical neurons. Neurosci. 92: 177-184 (1999) https://doi.org/10.1016/S0306-4522(98)00727-1
  8. Goodman Y, Mattson MP. Secreted forms of $\beta$-amyloid precursor protein protect hippocampal neurons against amyloid $\beta$-peptideinduced oxidative injury. Exp. Neurol. 128: 1-12 (1994) https://doi.org/10.1006/exnr.1994.1107
  9. Behl C, Davis JB, Cole GM, Schubert D. Vitamin E protects nerve cells from amyloid $\beta$-protein toxicity. Biochem. Biophys. Res. Commun. 186: 944-950 (1992) https://doi.org/10.1016/0006-291X(92)90837-B
  10. Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20: 154-159 (1997) https://doi.org/10.1016/S0166-2236(96)01030-2
  11. Selkoe DJ. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann. N.Y. Acad. Sci. 924: 17-25 (2000) https://doi.org/10.1111/j.1749-6632.2000.tb05554.x
  12. Pederson WA, Kloczewiak MA, Bluszajin JK. Amyloid beta-protein reduces acetylchoin synthesis in a cell line derived from chlinergic neurons of the basal forebrain. Proc. Natl. Acad. Sci. USA. 93: 8068-8071 (1996) https://doi.org/10.1073/pnas.93.15.8068
  13. Talesa VN. Acetylcholinesterase in Alzheimer's disease. Mech Aging Dev. 122: 1961-1969 (2001) https://doi.org/10.1016/S0047-6374(01)00309-8
  14. Trabace L, Cassano T, Steardo L, Pietra C, Villetti G, Kendrick KM, Cuomo V. Biochemical and neurobeabavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J. Pharmacol. Exp. Ther. 294: 187-194 (2000)
  15. Fukuda Y, Namiki M. Recent studies on sesame seed and oil. J. Jpn. Soc. Food Sci. Tech. 35: 552-559 (1988) https://doi.org/10.3136/nskkk1962.35.8_552
  16. Park WK, Park BH, Park YH. Encyclopedia of food and food science. Shin Kwang Publishing Co. Seoul, Korea. p. 243 (2000)
  17. Kurowska EM, Dresser GK, Deutsch L, Vachon D, Khalil W. Bioavailability of omega-3 essential fatty acids from perilla seed oil. Prostaglandins Leukotrienes Essential Fatty Acids 68: 207- 212 (2003) https://doi.org/10.1016/S0952-3278(02)00271-5
  18. Nagatsu A, Tenmaru K, Matsuura H, Murakami N, Kobayashi T, Okuyama H, Sakakibara J. Novel antioxidants from roasted perilla seeds. Chem. Pharm. Bull. 43: 887-889 (1995) https://doi.org/10.1248/cpb.43.887
  19. Karp F, Mihaliak CA, Harri JL, Croteau R. Monoterpene biosynthesis specificity of the hydroxylactions of (-)-limonene by enzyme preperations from peppermint (Menta pipertia), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch Biochem. Biophys. 276: 219-226 (1990) https://doi.org/10.1016/0003-9861(90)90029-X
  20. Ellman GL, Courtney KD, Andres JV, Featherstone RM. A new and lapid colormetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  21. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of tetrazolium-based semiautomated colorimetric assay: Assesment of chemosensitivity testing. Cancer Res. 47: 936-942 (1987)
  22. Giacobini E. Cholinesterase inhibitors do more than inhibit cholinesterase. pp. 227-235. In: Cholinesterase and cholinesterase inhibitors. Giacobini E (ed.), Martin Dunitz, London, UK (2000)
  23. Jenike MA, Albeit MS, Baer L. Oral phytostigmine as treatment for dementia of the Alzheimer's type: a long term outpatient trial. Alzheimer's Dis. Assoc. Disod. 4: 226-231 (1990)
  24. Sclar DA, Skaer TL. Current concepts in the treatment of Alzheimer's disease. Clin. Ther. 14: 2-10 (1992)
  25. Naito M, Umegaki H, Iguchi A. Protective effect of probucol against glutamate induced cytotoxicity in neurinal cell line PC12. Neurosci. lett. 186: 211-213 (1995) https://doi.org/10.1016/0304-3940(95)11321-M
  26. Seyfried J, Evert BO, Rundfeldt C, Schulz J, Karl B, Kovar A, Klockgether T, Wullner U. Flupirtine and retigabine prevent Lglutamate toxicity in rat pheochromocytoma PC12 cells. Eur. J. Pharmacol. 400: 155-166 (2000) https://doi.org/10.1016/S0014-2999(00)00397-6
  27. Osakada F, Hashino A, Kume T, Katsuki H, Kaneko S, Akaike A. Neuroprotective effects of alpha-tocopherol on oxidative stress in rat striatal cultures. Eur. J. Pharmacol. 465: 15-22 (2003) https://doi.org/10.1016/S0014-2999(03)01495-X
  28. Bondy SC, Lee DK. Oxidative stress induced by glutamate receptor agonist. Brain Res. 610: 229-233 (1993) https://doi.org/10.1016/0006-8993(93)91405-H
  29. Puttfarcken PS, Getz RL, Coyle JT. Kainic acid-induced lipid peroxidation: protection with butylated hydroxytoluen and U78517F in primary cultures of cerebella grannule cells. Brain Res. 624: 223-232 (1993) https://doi.org/10.1016/0006-8993(93)90081-W
  30. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE. $\beta$-Amyloid precursor protein metabolites and loss of neuronal $Ca^{2+}$ homeostasis in Alzheimer's disease. Trends Neurosci. 16: 409-414 (1993) https://doi.org/10.1016/0166-2236(93)90009-B
  31. Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. Role of potassium channels in amyloid induced cell death. J. Neurochem. 70: 1924-1934 (1998)
  32. Behl C, Hovery L, Krajewski S, Schubert D, Reed JC. Bcl-2 prevents killing of neuronal cells by glutamate but not by amyloid beta protein. Biochem. Biophys. Res. Commun. 197: 949-955 (1993) https://doi.org/10.1006/bbrc.1993.2571
  33. Paradis E, Douillard H, Koutroumanis M, Goodyer C, LeBlanc A. Amyloid peptide of Alzheimer's disease downregulates Bcl-2 and upregulate Bax expression in human neurons. J. Neurosci. 16: 7533-7539 (1996) https://doi.org/10.1523/JNEUROSCI.16-23-07533.1996
  34. Jang JH, Surh YJ. Protective effect of resveratrol on $\beta$-amyloidinduced oxidative PC12 cell death. Free Radic. Biol. Med. 34: 1100-1110 (2003) https://doi.org/10.1016/S0891-5849(03)00062-5
  35. Choi YT, Jung CH, Lee SR, Bae JH, Suh MH, Park JH, Park CW, Suh SI. The green tea polyphenol epigallocatechin gallate attenuates $\beta$-amyloid induced neurotoxicity in cultured hippocampal neuron. Life Sci. 70: 603-614 (2001) https://doi.org/10.1016/S0024-3205(01)01438-2
  36. Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW,Kim YH, Song DK. Protective effects against $\beta$-amyloid peptide toxicity in vivo with long term administration of ferulic acid. Bri. J. Pharm. 133: 89-96 (2001) https://doi.org/10.1038/sj.bjp.0704047
  37. Lee YJ, Shin DH, Chang YS, Shin JI. Antioxidative effects of some edible plant solvent extracts with various synergist. Korean J. Food Sci. Technol. 25: 683-688 (1993)
  38. Tada M, Matsumoto R, Yamaguchi H, Chiba K. Novel antioxidants isolated from perilla Frutescens britton var. crispa (Thunb). Biosci. Biotech. Biochemi. 60: 1093-1095 (1996) https://doi.org/10.1271/bbb.60.1093