Diabetes, Glucose Transport and Hypoglycaemic Agents

Lee-Yong Khil*

Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N4N1, Canada

(Received November 8, 2004; Accepted December 22, 2004)

Abstract – Diabetes mellitus is a complex metabolic derangement with hyperglycaemia being the most characteristic symptom of diabetes. Hyperglycaemia can be caused by an increase in the rate of glucose production by the liver or by a decrease in the rate of glucose use by peripheral tissues. Impaired glucose transport is one of the major factors contributing to insulin resistance in type 2 diabetic patients. The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clearing the post-prandial glucose load. Glucose transport is mediated by specific carriers called glucose transporters (GLUTs). In this article, the functional importance and molecular mechanisms of insulin-induced glucose transport and development of hypoglycaemic agents which increase glucose transport are reviewed.

Keywords □ diabetes, glucose transport, hypoglycemic agent, insulin, phosphatidylinositol 3-kinase, TC10

Diabetes mellitus is a complex metabolic derangement and is classified as type 1 and type 2 diabetes (World Health Organization Study Group, 1985). Type 1 diabetes, also called insulin-dependent diabetes mellitus, usually develops in children and adolescents, but can also develop in adults (Yoon and Jun, 1998). Type 1 diabetes is characterized by the absolute insulin deficiency caused by the destruction of pancreatic β-cells by a complicated and chronic pathogenic process of islet-specific autoimmune reaction (Yoon and Jun, 2001).

Type 2 diabetes, non-insulin-dependent diabetes mellitus, accounts for over 85% of the diabetic population and appears during the later decades of life (DeFronzo, 1988), except the maturity onset diabetes of the young (MODY) (Pirart, 1978). Genetic factors (e.g., genes involved in insulin resistance, obesity genes, and genes involved in β-cell function) and environmental factors (e.g., physical activity and diet) play a strong role in the development of the disease. In most genetically predisposed individuals, there is a slow progression from a normal state to insulin resistance, followed by hyperinsulinemia, glucose desensitization, defects in insulin secretion, impaired glucose tolerance, and then to hyperglycaemia (Jun et al., 1999).

The characteristic symptoms of diabetes are polyuria, increasing thirst and appetite, tiredness, weight loss and hyperglycaemia. Hyperglycaemia, the most characteristic symptom of diabetes is defined as fasting blood glucose levels above 250 mg/dl (Rifkin and Porte, 1997).

Diabetic patients are subject to numerous secondary complications such as microvascular, macrovascular, and neuropathic diseases, which greatly influence the lives of patients (Fajans and Conn, 1965). The development of complications in the diabetic patient relates largely to the severity and chronicity of hyperglycaemia. Thus, regulation of blood glucose is the major target for the management of type 2 diabetes, which can prevent the development of complications and improve the quality of life (UK Prospective Diabetes Study Group, 1998).

GLUCOSE TRANSPORT SYSTEM

Glucose uptake by tissues plays an essential role in glucose homeostasis. The liver takes up approximately one-third of an oral glucose load, the muscle and adipose tissue take up one-third, and non-insulin-dependent tissues take up the remaining third (Pagliassotti and Horton, 1994; Meyer et al., 2002; Moore et al., 2003). Hyperglycaemia can be caused by the increased glucose production by the liver or decreased glucose disposal by peripheral tissues (Guyton and Hall, 1996). Glucose transport is the first step for glucose utilization in peripheral tissues, and impaired glucose transport in adipose tissue and muscle is one of the major factors contributing to insulin resistance in diabetic patients (James and Piper, 1994). The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clear-

*Corresponding author
Tel: 1-403-220. Fax: 1-403-270-7526
E-mail: khil@ucalgary.ca
ing the post-prandial glucose load (DeFronzo et al., 1985; Krusznyska and Olefsky, 1996). Patients with type 2 diabetes exhibit a marked reduction in insulin-mediated glucose disposal (Ginsberg, 1975; Reaven, 1983). Thus, increasing glucose transport in the muscle and adipose tissue results in the decrease of blood glucose levels, contributing to the control of hyperglycaemia.

Glucose transport is mediated by specific facilitative carriers called glucose transporters (GLUTs) which do not require ATP for their function (Baldwin, 1993). Currently, 13 GLUT genes have been identified and functional GLUTs are listed in Table 1. These proteins exhibit a high degree of sequence homology but vary in their kinetic characteristics, sensitivity to hormonal and environmental stimuli, as well as tissue and subcellular distributions (Duchuzeau et al., 2002).

GLUT1 is widely distributed throughout the tissues and especially abundant in red blood cells, endothelial cells and tissue culture cell lines. Their major function is to facilitate basal glucose uptake in many types of cells. It mediates glucose transport in growing cells and across the blood-brain barrier. GLUT2 is a part of glucose sensing system in pancreatic β-cell and its expression is limited to pancreatic β-cell, hepatocyte, intestine, and kidney. GLUT4 is largely expressed in insulin-responsive tissues, such as skeletal and cardiac muscle, and adipocytes. It is known that 90% of glucose transporters in these tissues are GLUT4, demonstrating its pivotal role in insulin-sensitive glucose uptake, and in postprandial glucose disposal.

INSULIN-INDUCED GLUCOSE TRANSPORT

Table 1. The mammalian facilitative glucose transporter family

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Tissue Distribution</th>
<th>Proposed Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGLT1</td>
<td>Kidney, intestine</td>
<td>Na⁺ dependent active transport.</td>
</tr>
<tr>
<td>GLUT2</td>
<td>Liver, kidney, pancreatic β-cell, small intestine</td>
<td>Low affinity transporter. Hepatic glucose output. Part of the glucose sensor in islets and liver. Transepithelial transport in kidney and gut.</td>
</tr>
<tr>
<td>GLUT3</td>
<td>Neurons, placenta</td>
<td>High-affinity transporter. Unabated transport into central nervous system.</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Skeletal and cardiac muscle, brown and white adipose tissue</td>
<td>Insulin-stimulated glucose transport.</td>
</tr>
<tr>
<td>GLUT5</td>
<td>Small intestine, spermatozoa, smaller amounts in adipose tissue, muscle, brain and kidney</td>
<td>High-affinity fructose transporter.</td>
</tr>
<tr>
<td>GLUT7</td>
<td>Liver</td>
<td>Mediates glucose release from endoplasmic reticulum coupled to glucose-6-phosphatase.</td>
</tr>
</tbody>
</table>

Insulin stimulates various glucose metabolisms including glucose transport in insulin responsive tissues such as liver, muscle and adipose tissue. Insulin-stimulated glucose transport is mediated by insulin-responsive glucose transporter, GLUT4 which is mainly expressed in muscle and adipose tissue (Baldwin, 1993). Without insulin stimulation, more than 95% of the GLUT4 is located in GLUT4 storage vesicles (GSV) and the trans-Golgi network (TGN) vesicles close to the plasma membrane in the cytoplasm of adipocytes or muscle (Simpson et al., 2001). GLUT4-containing vesicles are almost entirely sequestered within the cell and sorted from the constitutive recycling pathway into a compartment that has a very slow exocytic rate (Czech and Corvera, 1999) (Fig. 1).

Upon insulin stimulation, there is a rapid and marked increase in the amount of GLUT4 at the cell surface and glucose transport. Insulin increases exocytosis of GLUT4-containing vesicles more than 5 fold while the rate of endocytosis from the cell surface decreased by 2-fold (Millar et al., 1999) (Fig. 2). Insulin increases constitutive recycling and efflux of GLUT4 in TGN vesicles as well as exocytosis of GLUT4 in GSVs from early endosomes (Tanner and Lienhard, 1987). The major population of GLUT4 translocated by insulin is originated from GSVs because the effect of insulin on the exocytosis of GSV in early endosomes is much greater than that on TGN vesicles (Rea and James, 1997).

The docking and fusion of GLUT4 vesicles, which are activated by insulin signal pathway, are mediated by distinct machinery at the cell surface (Martin et al., 2000). v-Soluble N-Ethylmaleimide attachment protein receptor (SNARE) and t-SNARE are required for the translocation of GLUT4. The v-
SIGNAL TRANSDUCTION PATHWAYS RELATED TO GLUCOSE TRANSPORT

Phosphatidylinositol 3-kinase pathway

Binding of insulin on insulin receptor changes the conformation of receptor α-subunit, which in turn activates tyrosine kinases activity of receptor β-subunit and induces the phosphorylation of insulin receptor substrate (IRS) family members (Lane *et al.*, 1990). The phosphorylated IRS proteins recruit the phosphatidylinositol 3-Kinase (PI3-K) by its association with the regulatory subunit of PI3-K (p85α) (Shepherd *et al.*, 1998). PI3-K generates the lipid mediator of insulin, phosphatidylinositol-3,4,5-triphosphate (PIP3) (Jiang *et al.*, 1998). Blockade of insulin-induced PI3 generation with PI3-K inhibitors or with a dominant negative PI3-K mutant results in complete inhibition of insulin-induced glucose transport and GLUT4 translocation in adipocytes (Kotani *et al.*, 1995). This demonstrates the absolute requirement of PI3-K in insulin-induced translocation of GLUT4 from both the endosomal and GSV pools.

PI3 recruits serine/threonine kinase Akt/protein kinase B (PKB) to the plasma membrane where 3'-phosphoinositide-dependent kinase 1 (PDK1) activates Akt/PKB by phosphorylating critical threonine residues in its activation loops (Hill *et al.*, 1999; Alessi *et al.*, 1997). PDK1 activation by PI3 is also involved in the activation of atypical protein kinase Cs (PKCζ/δ) by insulin (Standaert *et al.*, 2001; Arribas *et al.*, 2003). Recent findings suggest that atypical PKCs and Akt/PKB serve as important positive regulators of insulin-stimulated glucose metabolism, and active forms of these two enzymes appear to be required for insulin-induced GLUT4 translocation to plasma membrane (Simpson *et al.*, 2001).

TC10 Pathway

A recent series of experiments have revealed the PI3-K-independent glucose transport mechanism. The plasma membrane of adipocytes is characterized by the presence of multiple caecal, large vesicular invagination of plasma membrane (Ribon and Saltiel, 1997; Ribon *et al.*, 1998). Caveolar appears to play an important role in insulin-induced tyrosine phosphorylation of c-Chb by insulin receptor (Ribon *et al.*, 1998; Mastick *et al.*, 1995). Phosphorylated c-Chb is recruited to lipid rafts as a complex with CAP (Chb associated protein), which binds to flotillin (Baumann *et al.*, 2000). CAP may aid c-Chb phosphorylation by insulin receptors and recruitment (Ahmed *et al.*, 2000).

TC10 is one of the Rho family GTPases expressed in muscle and adipose tissue, which is associated with lipid raft. Phospho-
Fig. 3. Signal transduction pathways related to insulin-induced GLUT4 translocation. Recruitment of PI3-K by phosphorylated IRS results in the production of PIP3 which in turn activates PDK1 and Akt/PKB. Phosphorylated Cbl induces complex formation of Cbl-CAP-CrkII-C3G in lipid raft. C3G functions as a guanine nucleotide exchange factor for TC10. These two pathways play the role to elicit GLUT4 translocation through membrane trafficking system. IR: insulin receptor; IRS, insulin receptor substrate; PDK, 3'-phosphoinositide-dependent kinase; PI3-K, phosphatidylinositol 3-kinase, PKC, protein kinase C; PIP3, phosphatidylinositol 3,4,5-triphosphate.

Phosphorylated c-Cbl recruits C3G, which is a guanine nucleotide exchange factor of TC10, via an SH3 domain-containing adaptor, CrkII. Thus the insulin-induced localization of the CAP/Cbl/CrkII/C3G complex promotes the conversion of GDP-bound TC10 to an active GTP-bound state (Chiang et al., 2001). While the molecular target of TC10 is currently unknown, TC10 activation may be required for insulin-stimulated GLUT4 translocation from the GSV pool, with no apparent effect on GLUT4 in the endosomal pool (Watson et al., 2001).

APS (adaptor protein with Pleckstrin homology and Src homology 2 domains) is recruited by the insulin receptor and is essential for GLUT4 translocation. Recently the primary and essential role of APS for recruitment of c-Cbl and CAP in insulin signaling was reported. In the absence of APS, there is no association of insulin receptor and CAP, and no phosphorylation of Cbl by insulin receptor (Ahn et al., 2004).

Hypoglycaemic agents

Oral hyperglycaemic agents are used to compensate insulin and manage metabolic abnormalities associated with hyperglycaemia in diabetic patients (Møller, 2001; Inzucchi, 2002). The studies of overexpression or ablation of GLUT4 in skeletal muscle and adipose tissue revealed that glucose transport is the rate limiting step for glucose disposal, and the absence of GLUT4 results in impaired insulin tolerance and defects in glucose metabolisms (Wallberg-Henriksson and Zierath, 2001; Carvalho et al., 2004). Thus GLUT4 is an attractive target for the development of hypoglycaemic agents.

Hypoglycaemic agents are known to increase glucose transport. Sulfonylureas increase insulin secretion, proinsulin biosynthesis, but decrease glucagon secretion (Zimmerman, 1997). Sulfonylureas also have effects on peripheral insulin resistance such as decreased glucose transport in diabetic individuals (Farese et al., 1991). Metformin decreases hepatic glucose production, increases glucose uptake by muscle and adipose tissue, and alters intestinal function (Hundal et al., 2000; Bailey and Turner, 1996). However, these hypoglycaemic agents mainly elicit their effect through insulin secretion or inhibition of hepatic glucose output rather than glucose transport (Inzucchi, 2002).

The materials which increases glucose transport and GLUT4 translocation through insulin signalling-dependent or independent pathway are intensively examined for the treatment of diabetes. Natural products such as ginseng (Attele et al., 2002), green tea (Wu et al., 2004; Tsuneki et al., 2004) and flavonoids (Khiel et al., 1997; Khiel et al., 1999; Choi et al., 2004) are examined for their effect on glucose transport and hypoglycaemic effects in diabetic animal models. Synthetic small molecules or chemicals are also tested for potential pharmacological uses as insulin mimetics or stimulatory agent for glucose transport (Ciaraldi et al., 1995; Sarges et al., 1996; Zhang et al., 1999;
Strowski et al., 2004).

Newly introduced thiazolidinediones, which are known as insulin sensitizers, increase peripheral glucose disposal via glucose transport and GLUT4 translocation (Ciaraldi et al., 1995; Shintani et al., 2001; Ciaraldi et al., 2002) by activating peroxisome proliferators-activated receptor-γ (PPAR-γ). PPAR-γ is very important for the expression of molecules such as GLUT1, GLUT4, and p85 PI3-kinase that play a critical role in insulin action (Mudaliar and Henry, 2001). It is also reported that rosiglitazone normalizes cellubrevin, VAMP-2 and syntaxin 4 resulting in the reversion of elevated v- and t-SNARE in insulin resistance state (Maier et al., 2000).

CONCLUSION

Insulin is responsible for lowering blood glucose by increasing glucose transport and glucose utilization in its major target tissues such as liver, muscle and adipose tissue. The regulation of blood glucose is the major target for the management of type 2 diabetes. However, in type 2 diabetic patients, insulin resistance prevents insulin from decreasing blood glucose because of less- or non-responsiveness of peripheral tissues to insulin. Therefore impaired glucose transport is considered as one of the pathogenesis of insulin resistance. For these reasons, increasing glucose transport by any means in the muscle and adipose tissue results in the decrease of blood glucose levels, contributing to the control of hyperglycaemia.

Translocation of GLUT4 to the cell surface is impaired in insulin resistant muscle and adipose tissue because the overall levels of GLUT4 are normal in patients with type 2 diabetes (Kahn, 1992). Furthermore, the overexpression of GLUT4 in either adipose tissue or muscle in animals exhibit a marked improvement in whole body insulin sensitivity implying that this may be a possible approach for attaining successful management of type 2 diabetes (Liu et al., 1993; Tozzo et al., 1993). Thus potentiation of glucose transport by increasing GLUT4 translocation to the cell surface through the stimulation of insulin signal transduction pathways or activation of gene expression of GLUT4, especially in skeletal muscle, would have enormous therapeutic benefit for type 2 diabetes management.

REFERENCES

Diabetes, glucose transport and hypoglycaemic agents

Shepherd, P.R., Withers, D.J. and Siddle, K. (1998). Phospho-
nositide 3-kinase: the key switch mechanism in insulin signal-
Shintani, M., Nishimura, H., Yonemitsu, S., Ogawa, Y., Hayashi,
not only increases GLUT4 but also induces its translocation in
rat adipocytes. Diabetes. 50, 2296-2300.
the cross roads between membrane trafficking and signal trans-
Standart, M.L., Bandyopadhyay, G., Kanoh, Y., Sajan, M.P. and
Farese, R.V. (2001). Insulin and PIP3 activate PKC-zeta by
mechanisms that are both dependent and independent of phos-
phorylation of activation loop (T410) and autophosphorylation
(T560) sites. Biochemistry. 40, 249-255.
Strowski, M.Z., Li, Z., Szalkowski, D., Shen, X., Guan, X.M.,
cule insulin mimetic reduces hyperglycemia and obesity in a
145, 5259-5268.
Tanner, L.I. and Lienhard, G.E. (1987). Insulin elicits a redistribu-
tion of transferrin receptors in 3T3-L1 adipocytes through an
increase in the rate constant for receptor externalization. J.
Biol. Chem. 262, 8975-8980.
Increased basal and insulin-stimulated glucose transport and
metabolism in isolated adipocytes from transgenic mice overex-
pressing GLUT4 selectively in fat. Diabetes. 42 (Suppl. 1), 13A.
Tsumeki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T. and
and serum proteomic patterns in diabetic (db/db) mice and on
UK Prospective Diabetes Study (UKPDS) Group. (1998). Inten-
sive blood-glucose control with sulphonylureas or insulin com-
pared with conventional treatment and risk of complications in
player regulating glucose homeostasis? Insights from transgenic
and knockout mice (review). Mol. Membr. Biol. 18, 205-211.
Watson, R.T., Shigematsu, S., Chiang, S.H., Mora, S., Kanzaki, M.,
microdomain compartmentalization of TC10 is required for insu-
Wu, L.Y., Juan, C.C., Hwang, L.S., Hsu, Y.P., Ho, P.H. and Ho, L.T.
(2004). Green tea supplementation ameliorates insulin resistance
and increases glucose transporter IV content in a fructose-fed rat
Yoon, J.W. and Jun, H.S. (1998). Insulin-dependent diabetes mel-
litus. In Encyclopedia of Immunology (M.M. Roitt and P.J. Delves,
Yoon, J.W. and Jun, H.S. (2001). Cellular and molecular patho-
genic mechanisms of insulin-dependent diabetes. Ann. N. Y.
Acad. Sci. 928, 200-211.
Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y., Royo, I.,
Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao,
North Am. 26, 511-521.