Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation

유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이

  • Kim Yeon-Sil (Department on Radiation Oncology, College of Uediclne, The Catholic University) ;
  • Kim Sung-Whan (Department on Radiation Oncology, College of Uediclne, The Catholic University) ;
  • Yoon Sel-Chul (Department on Radiation Oncology, College of Uediclne, The Catholic University) ;
  • Lee Jung-Seok (Department on Radiation Oncology, College of Uediclne, The Catholic University) ;
  • Son Seok-Hyun (Department on Radiation Oncology, College of Uediclne, The Catholic University) ;
  • Choi Ihl-Bong (Department on Radiation Oncology, College of Uediclne, The Catholic University)
  • 김연실 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 김성환 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 윤세철 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 이정석 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 손석현 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 최일봉 (가톨릭대학교 의과대학 방사선종양학교실)
  • Published : 2004.09.01

Abstract

Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.

목적: 유방의 방사선조사 시 결손조직을 보상하고 방사선 균질선량 분포를 얻기 위해 통상적으로 physical wedge를 사용하여 왔다. Physical wedge 사용 시 주변의 폐, 심장, 반대편 유방, 피부에 조사되는 방사선량의 증가에 따른 급성, 만성 부작용의 증가가 문제시 된다. 본 연구에서는 일반적인 Physical wedge와 virtual wedge를 비교하여 동측 유방, 반대편 유방, 폐, 심장, 주변연부조직에 미치는 선량분포의 개선점을 알아보고자 하였다. 재료 및 방법: Solid water phantom을 이용하여 Dmax와 10 cm 깊이에서 physical wedge와 virtual wedge 사용시 조사야 주변선량을 비교하였다 Humanoid Phantom (Anderson Rando Phantom)을 사용하여 Lt. breast의 tangential Irradiation 시 physical wedge와 virtual wedge 사용에 따른 동측 유방선량과 피부선량, 반대편 유방선량과 반대편 유방의 피부선량, 주변 연부조직선량, 동측 폐선량 및 심장에 조사되는 선량을 TLD를 이용하여 비교하였으며 Helax 5.0 RTP system을 이용한 compute planning으로 선량분포 및 관심부의 DVH를 비교하였다. 이때 virtual wedge와 physical wedge의 사용에 따른 총조사 시간을 측정하였다 또한 7명의 유방암 환자에서 virtual wedge, physical wedge 사용에 따른 동측 유방 피부선량, 반대편 유방 피부선량, 조사야에서 1.5 cm 떨어진 주변 선량을 측정하여 비교하였다. 결과: Virtual wedge는 15$^{\circ}$, 30$^{\circ}C$, 45$^{\circ}C$, 50$^{\circ}C$ 모두에서 physical wedge에 비해 주변선량이 감소하였으며 방사선조사 시간을 53$\~$55$\%$ 감소시켜 유용한 결과를 나타냈다. 15$^{\circ}C$, 30$^{\circ}C$ wedge를 사용한 Humanoid Phantom의 TLD 측정에서도 virtual wedge에서 반대편 유방선량은 1.35$\%$, 2.55$\%$ 감소하였고, 반대편 유방 피부선량은 0.87$\%$, 1.9$\%$ 감소하였다 또한 동측 폐선량은 2.7$\%$, 5.0$\%$, 심장선량은 0.95$\%$, 2.5$\%$ 감소하였다. 또한 조사야 경계부위의 선량은 1.8$\%$, 2.33$\%$ 감소하였으며 동측 유방의 피부선량은 2.4$\%$, 4.58$\%$ 증가하였다. Helax 5.0 RTP system을 이용한 DVH analysis에서 동측 유방내 선량균질정도는 physical wedge와 virtual wedge에서 차이 없이 유사하였다 결론: 유방암치료에서 virtual wedge는 통상 사용하는 physical wedge에 비하여 주변 연부조직선량, 반대편 유방선량, 동측 페선량 및 심장선량을 감소시켜 급, 만성 방사선 부작용의 위험을 감소시킬 수 있는 임상적으로 매우 유용한 방법이며 또한 방사선조사시간을 단축시킴으로써 선형가속기의 부하를 줄일 수 있다.

Keywords

References

  1. Lichter AS. Breast cancer. In : Leibel SA, Phillips TL, editors. Textbook of Radiation Oncology. 1st ed. Philadelphia; W.B. Saunders Company; 1998:1013-1045
  2. Zhu xR, Gillin MT, Jursinic PA, Lopez F, Grimm DF, Rownd JJ. Comparison of dosimetric characteristics of Siemens virtual and physical wedges. Med Phys 2000;27(10):2267-77 https://doi.org/10.1118/1.1312813
  3. McFarland BJ. The effect of a dynamic wedge in the medial tangential field upon the contralateral breast dose. Int J Radiat Oncol Biol Phys 1990;19(6):1515-20 https://doi.org/10.1016/0360-3016(90)90366-R
  4. Fraass BA, Robinson PL, Lichter AS. Dose to the contralateral breast due to primary breast irradiation. Int J Radiat Oncol Biol Phys 1985;11:485-497 https://doi.org/10.1016/0360-3016(85)90179-8
  5. Warlick WB, O'rear JH, Earley L, Moeller JH, Gaffney DK, Leavitt DD. Dose to the contralateral breast: a comparison of two technique using the enhanced dynamic wedge versus a standard wedge. Med Dosim 1997;22:185-191 https://doi.org/10.1016/S0958-3947(97)00015-0
  6. McCredie JA, Inch WR, Alderson M. Consecutive primary carcinoma of the breast. Cancer 1975;35:1472-1477 https://doi.org/10.1002/1097-0142(197505)35:5<1472::AID-CNCR2820350536>3.0.CO;2-M
  7. Hankey BF, Curtis RE, Naughton MD, Boice JD, Flanney JT. A retrospective analysis of second breast cancer risk for primary breast cancer patients with an assessment of the effect of radiation therapy J Nat Cancer Inst 1983;70: 797-804
  8. Weides CD, Mok EC, Chang WC, Findley DO, Shostak CA. Evaluating the dose to the contralateral breast when using a dynamic wedge versus a regular wedge. Med. Dosim 1995;20:287-293 https://doi.org/10.1016/0958-3947(95)02011-X
  9. Li Z, Klein EE. Surface and peripheral doses of dynamic and physical wedges. Int J Radiat Oncol Biol Phys 1997;37(4): 921-925 https://doi.org/10.1016/S0360-3016(96)00610-4
  10. Leavitt DD, Moeller JH, Stone A. Reduction of peripheral dose by dynamic wedge technique. Med Phys 1993;20:877
  11. Chang Sx, Deschesne KM, Cullip TJ, Parker SA, Earnhart J. A comparison of different intensity modulation treatment techniques for tangential breast irradiation. Int J Radiat Oncol Biol Phys 1990;19:1515-1520 https://doi.org/10.1016/0360-3016(90)90366-R
  12. Kelly CA, Wang XY, Chu JC, Hartsell WF. Dose to contralateral breast: Comparison of four primary breast irradiation. Int J Radiat Oncol Biol 1996;34:727-732 https://doi.org/10.1016/0360-3016(95)02051-9
  13. Ochran TG, Boyer AL, Nyerick CE, Otte VA. Dosimetric characteristics of wedges mounted beyond the blocking tray. Med Phys 1992;19(1):187-195 https://doi.org/10.1118/1.596876
  14. Oh YT, Keum KC, Chu SS, Kim KW. Dosimetric characteristics of dynamic wedge technique. J Korean Soc Ther Radiol Oncol 1996;14(4):323-332