동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study

  • 이석 (고려대학교 의과대학 방사선종양학교실) ;
  • 이상훈 (국민건강보험공단 일산병원 방사선종양학과) ;
  • 신동호 (국립암센터 양성자센터) ;
  • 양대식 (고려대학교 의과대학 방사선종양학교실) ;
  • 최명선 (고려대학교 의과대학 방사선종양학교실) ;
  • 김철용 (고려대학교 의과대학 방사선종양학교실)
  • Lee Suk (Department of Radiation Oncology, Korea University Medical Center) ;
  • Lee Sang Hoon (Department of Radiation Oncology, Ilsan Hospital) ;
  • Shin Dongho (Center for Proton Therapy, National Cancer Center) ;
  • Yang Dae Sik (Department of Radiation Oncology, Korea University Medical Center) ;
  • Choi Myung Sun (Department of Radiation Oncology, Korea University Medical Center) ;
  • Kim Chul Yong (Department of Radiation Oncology, Korea University Medical Center)
  • 발행 : 2004.12.01

초록

목적 : 간 등의 상 복부에 위치한 종양의 방사선 조사 체적은 호흡에 의한 종양의 이동을 포함하기 때문에 방사선 조사 체적이 증가되어 방사선 독성 및 정상조직 선량이 증가하게 된다. 이러한 문제점을 극복하기 위해 동 팬텀과 초음파센서를 이용하여 호흡운동에 의한 환자 체표면의 움직임을 획득하고, 획득한 데이터의 역 값을 이용해 환자침대를 조절해줄 수 있는 호흡운동 조절 방사선치료 기술을 개발하고자 한다. 대상 및 방법 : 호흡운동에 의한 환자 체표면의 움직임을 평가하기 위해 제작한 팬텀은 조정기(BS II, 20 Mhz, 8K Byte), 센서(Ultra-Sonic, range $3\~3$ m), Computer (RS232C), Sewo Motor (Torque 2.3 Kg) 등으로 구성하였고, 제어와 구동을 위한 획득-보정-분석 프로그램을 작성하였다. 최대 2 cm 범위 내에서 팬텀을 움직이게 하였고, 팬텀의 움직임과 보정이 순차적으로 일어나도록 프로그램하였으며, x, y, z가 연속적으로 움직이도록 구성하였다. 임의의 움직임 데이터(유격이 2 cm이 되도록 하여 3차원 데이터 형태)를 입력하여 동 팬텀을 조정하고, 동시에 팬텀 움직임을 초음파 센서를 이용하여 획득한 후, 두 데이터간의 비교, 분석을 시행하였다. 이후 쥐(Guinea-pig, about 500g)를 이용하여 호흡운동에 의한 환자 체표면의 움직임을 획득한 후 획득한 데이터의 역 값으로 팬텀을 구동시킴으로써 실시간 호흡운동 조절 방사선치료 기술을 평가하였다. 결과 : 팬텀 실험에서 3 차원 입력데이터에 대한 팬텀 보정 데이터간의 정확성을 시간에 대한 거리 값으로 비교한 결과 ${\pm}1\%$ 이내의 정확성을 알 수 있었고, 이에 필요한 보정시간은 $2.34{times}10^{-4}$초임을 알 수 있었다. 또한 동물 실험에서도 동일한 방법으로 시간에 대한 거리 그래프와 획득-보정간의 지연 시간 등을 분석한 결과 팬텀 데이터와 같은 결과를 얻을 수 있었다. 결론 : 팬텀, 동물 실험 모두에서 시간에 대한 거리 값과 각각의 경우에 획득-보정간의 지연 시간을 분석한 결과 데이터 값은 ${\pm}1\%$ 이내에서 일치하였으며, 데이터 획득-보정 지연 시간은 2.34H10-4 초 이내 즉, 실시간으로 얻을 수 있어 새로운 호흡운동 조절 방사선치료 기술의 임상적용에의 가능성을 확인할 수 있었다.

Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

키워드

참고문헌

  1. Vedam SS, Kini VR, Keall PJ, et al. Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med Phys 2003;30(4):505-513 https://doi.org/10.1118/1.1558675
  2. Henkelman RM, Mah K. How important is breathing in radiation therapy of the thorax? Int J Radiat Oncol Biol Phys 1982;2005-2010
  3. Rardall KT, James MB, Lon HM, et al. Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors. Int J Radiat Oncol Biol Phys 1997;38(3):613-617 https://doi.org/10.1016/S0360-3016(97)00009-6
  4. Balter JM, Ten Heken RK, Lam KL. Assessment of margins for ventilatory motion. Med Phys 1994;21:913-920
  5. Antolak JA, Rosen II. Planning target volumes for radiotherapy: how much margin is needed? Int J Radiat Oncol Biol Phys 1999;44(5):1165-1170 https://doi.org/10.1016/S0360-3016(99)00117-0
  6. Indra JD, Rachelle ML, Benjamin M, et al. Efficacy of a belly board device with CT-simulation in reducing small bowel volume within pelvic irradiation fields. Int J Radiat Oncol Biol Phys 1997;39:67-76 https://doi.org/10.1016/S0360-3016(97)00310-6
  7. Stroom JC, Koper PC, Korevaar GA, et al. Internal organ motion in prostate cancer patients treated in prone and supine treatment position. Radiotherapy and Oncology 1999; 51(3):237-248 https://doi.org/10.1016/S0167-8140(99)00061-4
  8. Ritchie CJ, Hseih J, Gard MF, et al. Predictive respiratory gating: A new method to reduce motion artifacts on CT scans. Radiology 1994;190:847-852 https://doi.org/10.1148/radiology.190.3.8115638
  9. Mori M, Murata K, Takahashi M, et al. Accurate contiguous sections without breath-holding on chest CT: value of respiratory gating and ultrafast CT Am J Roentgenol 1994;162:1057-1062
  10. Kubo HD, Hill BC. Respiration gated radiotherapy treatment: A technical study. Phys Med Biol 1996;41:83-91 https://doi.org/10.1088/0031-9155/41/1/007
  11. Tada T, Minakuchi K, Fujioka T, et al. Lung cancer: intermittent irradiation synchronized with respiratory motion result of a pilot study. Radiology 1998;207:779-783 https://doi.org/10.1148/radiology.207.3.9609904
  12. Ramsey CR, Scaperoth D, Arwood D, et al. Clinical efficacy of respiratory gated conformal radiation therapy. Med Dosim 1999;24:115-119 https://doi.org/10.1016/S0958-3947(99)00006-0
  13. Vedam SS, Keall PJ, Kini V, et al. Determining parameters for respiration gated radiotherapy. Med Phys 2001;28:2139-2146 https://doi.org/10.1118/1.1406524
  14. Kim DJ, Murray BR, Halperin R, et al. Held-breath self-gating technique for radiotherapy of non-small cell lung cancer: A feasibility study. Int J Radiat Oncol Biol Phys 2001;49:43-49 https://doi.org/10.1016/S0360-3016(00)01372-9
  15. Kubo HD, Wang L. Introduction of audio gating to further reduce organ motion in breathing synchronized radiotherapy. Med Phys 2002;29:345-350 https://doi.org/10.1118/1.1448826
  16. Lee S, Seong JS, Kim YB, et al. Use of respiratory motion reduction device (RRD) in treatment of hepatoma. J Korean Soc Ther Radiol Oncol 2001;19(4):319-326
  17. Chu SS, Cho KH, Lee CG, et al. Development of conformal radiotherapy with respiratory gate device. J Korean Soc Ther Radiol Oncol 2002;20(1):41-52
  18. Jiang SB, Pope C, Jarrah K M Al, et al. An experimental investigation on intra- fractional organ motion effects in lung IMRT treatments. Phys Med Biol 2003;48:1773-1784 https://doi.org/10.1088/0031-9155/48/12/307
  19. Suh Y, Yi B, Ahn S, et al. Aperture maneuver with compelled breath (AMC) for moving tumors: A feasibility study with a moving phantom. Med Phys 2004;31(4):760-766 https://doi.org/10.1118/1.1650565
  20. Hanley J, Debois MM, Mah D, et al. Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization reduced lung density in dose calculation. Int J Radiat Oncol Biol Phys 1999;45:603-611 https://doi.org/10.1016/S0360-3016(99)00154-6
  21. Balter JM, Lam KL, McGinn CJ, et al. Improvement of CT-based treatment planning models of abdominal targets using static exhale imaging. Int J Radiat Oncol Biol Phys 1998;41:939-943 https://doi.org/10.1016/S0360-3016(98)00130-8
  22. Kubo HD, Len PM, Minohara S, et al. Breathing synchronized radiotherapy program at the university of california davis cancer center. Med Phys 2000;27:346-353 https://doi.org/10.1118/1.598837
  23. Mah D, Hanley J, Rosenzweig KE, et al. Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. Int J Radiat Oncol Biol Phys 2000;48:1175-1185 https://doi.org/10.1016/S0360-3016(00)00747-1
  24. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999;44:911-919 https://doi.org/10.1016/S0360-3016(99)00056-5
  25. Dawson LA, Broch KK, Kazanjian S, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys 2001;51:1410-1421 https://doi.org/10.1016/S0360-3016(01)02653-0
  26. Mageras GS, Yorke E, Rosenzweig K, et al. Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J Appl Clin Med Phys 2001;2:191-200 https://doi.org/10.1120/1.1409235
  27. Wagman R, Yorke E, Ford E, et al. Respiratory gating for liver tumors: Usein dose escalation. Int J Radiat Oncol Biol Phys 2003;55:659-668 https://doi.org/10.1016/S0360-3016(02)03941-X
  28. Nehmeh SA, Eridi YE, Ling CC, et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002;29:366-371 https://doi.org/10.1118/1.1448824
  29. Hugo GD, Agazaryan N, Solberg TD. An evaluation of gating window size, delivery method and composite field dosimetry of respiratory-gated IMRT. Med Phys 2002;29:2517- 2525 https://doi.org/10.1118/1.1514578
  30. Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external beam radiotherapy. Int J Radiat Oncol Biol Phys 2002;52:1389-1399 https://doi.org/10.1016/S0360-3016(01)02789-4
  31. Suh Y, Yi B, Sin SA, et al. A feasibility study on the prediction of the target in the lung from the skin motion-animal study. Korean J Med Phys 2002;13:163-168
  32. Shimizu S, Shirato H, Ogura S, et al. Detecting of lung tumor movement in real-time tumor-tracking radiotherapy. Int J Radiat Oncol Biol Phys 2001;51:304-310
  33. Shirato H, Shimizu S, Kunieda T, et al. Physical aspects of a real-time tumor tracking system for gated radiotherapy. Int J Radiat Oncol Biol Phys 2000;48:1187-1195 https://doi.org/10.1016/S0360-3016(00)00748-3
  34. Harada T, Shirato H, Ogura S, et al. Real-time tumor tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy. Cancer 2002;95:1720-1727 https://doi.org/10.1002/cncr.10856
  35. Seppenwoolde Y, Shirato H, Kitamura K, et al. Precise and real-time measurements of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:822-833 https://doi.org/10.1016/S0360-3016(02)02803-1
  36. Shirato H, Shimizu S, Kitamura K, et al. Four dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 2000;48:435-442 https://doi.org/10.1016/S0360-3016(00)00625-8
  37. Keall PJ, Kini V, Vedam SS, et al. Motion adaptive X-ray therapy: A feasibility study. Phys Med Biol 2001;46:1-10 https://doi.org/10.1088/0031-9155/46/1/301
  38. Kubo HD, Hill BC. Respiration gated radiotherapy treatment: a technical study. Phys Med Biol 1996;41:83-91 https://doi.org/10.1088/0031-9155/41/1/007
  39. Ohara K, Okumura T, Akisada T, et al. Irradiation synchronized with respiration gate. Int J Radiat Oncol Biol Phys 1989;17:853-857 https://doi.org/10.1016/0360-3016(89)90078-3